

PSI Journeyman Online Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How long can temporary electrical installations be used during holidays?**
 - A. 30 days**
 - B. 60 days**
 - C. 90 days**
 - D. 120 days**
- 2. What is the voltage drop for a 3-hp pump installed 220 feet from a 220-volt main service using 12 AWG solid wire?**
 - A. 4.4 volts**
 - B. 6.6 volts**
 - C. 8.8 volts**
 - D. 10.0 volts**
- 3. What safety device can detect an arc fault and disconnect the power?**
 - A. Fuse**
 - B. Ground Fault Circuit Interrupter**
 - C. Arc-Fault Circuit Interrupter**
 - D. Overcurrent Relay**
- 4. What is a conduit used for in electrical installations?**
 - A. To support electrical devices**
 - B. To protect and route electrical wiring**
 - C. To increase wire conductivity**
 - D. To monitor electrical flow**
- 5. What certification should a fixture box have to ensure safe ceiling fan support?**
 - A. No certification is needed**
 - B. Just a generic electrical rating**
 - C. A rating specifically for ceiling fan support**
 - D. A weather resistance rating**

6. What is the minimum fire rating for electrical vaults housing electrical equipment over 600 volts?

- A. 1 hour
- B. 2 hours
- C. 3 hours
- D. 4 hours

7. What does "hardwired" refer to in electrical installations?

- A. Devices that are easily removable
- B. Battery-operated devices
- C. Devices that are permanently connected to the electrical system
- D. Devices that use wireless connections

8. Which conductor size is required for a 20-amp residential branch circuit?

- A. 10 AWG
- B. 12 AWG
- C. 14 AWG
- D. 16 AWG

9. What is the minimum depth for burying direct-burial cable?

- A. 12 inches
- B. 18 inches
- C. 24 inches
- D. 30 inches

10. How much power is lost at a bad splice with a measured resistance of 0.5 ohms in a circuit drawing 40 amperes?

- A. 400 watts
- B. 600 watts
- C. 800 watts
- D. 1000 watts

Answers

SAMPLE

1. C
2. C
3. C
4. B
5. C
6. C
7. C
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. How long can temporary electrical installations be used during holidays?

- A. 30 days**
- B. 60 days**
- C. 90 days**
- D. 120 days**

Temporary electrical installations are often utilized for short-term activities, such as holiday events, festivals, or construction work. The guideline typically allows for a maximum usage period of 90 days. This duration is intended to provide flexibility for maintenance, setup, and takedown while ensuring safety and compliance with electrical codes. Using temporary installations within this timeframe allows for proper evaluation and monitoring of the setup to prevent issues that might arise from long-term use of these provisional systems. Beyond 90 days, more permanent solutions are generally required to ensure safety standards and reliability are maintained. This period balances operational needs during holiday festivities with the necessity for adherence to safety regulations.

2. What is the voltage drop for a 3-hp pump installed 220 feet from a 220-volt main service using 12 AWG solid wire?

- A. 4.4 volts**
- B. 6.6 volts**
- C. 8.8 volts**
- D. 10.0 volts**

To determine the voltage drop for a 3-horsepower (hp) pump installed 220 feet from a 220-volt main service using 12 AWG solid wire, we need to consider a few important factors including the current drawn by the pump, the distance of the wire run, and the properties of the wire. First, let's calculate the current that a 3-hp pump draws. Electric power is measured in watts, and 1 hp is approximately equal to 746 watts. Therefore, a 3-hp pump would use about: $3 \text{ hp} * 746 \text{ watts/hp} = 2238 \text{ watts}$ To find the current in amperes, we use the formula: $\text{Current (I)} = \text{Power (P)} / \text{Voltage (V)}$ So substituting our values: $I = 2238 \text{ watts} / 220 \text{ volts} \approx 10.14 \text{ amps}$ Next, we can calculate the voltage drop. The voltage drop (V_d) can be calculated using the formula: $V_d = 2 * L * I * R$ Where: - L is the one-way length of the circuit (in feet), - I is the current in amperes, - R is the resistance per 1000 feet for the wire

3. What safety device can detect an arc fault and disconnect the power?

- A. Fuse
- B. Ground Fault Circuit Interrupter
- C. Arc-Fault Circuit Interrupter**
- D. Overcurrent Relay

The Arc-Fault Circuit Interrupter is specifically designed to detect arc faults, which can occur when there is an unintentional electric discharge or arc between conductors in a circuit. These types of faults can create high temperatures and pose serious fire hazards. The Arc-Fault Circuit Interrupter works by monitoring the electrical current and identifying the unique characteristics of arcing. Once an arc is detected, it quickly disconnects the power to prevent potential fires and ensure the safety of the environment. Other devices mentioned, such as fuses and ground fault circuit interrupters, serve different protective functions. Fuses provide overcurrent protection, while ground fault circuit interrupters are designed to prevent electrical shock by detecting imbalances between outgoing and incoming current. Overcurrent relays protect against excessive current surges but do not specifically detect arcing conditions. Thus, the Arc-Fault Circuit Interrupter is the appropriate safety device for this particular function.

4. What is a conduit used for in electrical installations?

- A. To support electrical devices
- B. To protect and route electrical wiring**
- C. To increase wire conductivity
- D. To monitor electrical flow

A conduit serves a critical purpose in electrical installations by providing protection and routing for electrical wiring. Its primary function is to shield wires from physical damage, moisture, and corrosive environments, which is essential for maintaining the safety and reliability of the electrical system. By organizing wiring into a defined pathway, conduits also help reduce clutter, prevent accidental contact, and make future maintenance or upgrades easier. Different types of conduits, such as rigid metal, PVC, or flexible options, allow for various applications depending on the specific requirements of the installation site. These conduits contribute not only to the longevity of the wiring but also enhance the overall safety of electrical installations by minimizing hazards associated with exposed wires.

5. What certification should a fixture box have to ensure safe ceiling fan support?

- A. No certification is needed**
- B. Just a generic electrical rating**
- C. A rating specifically for ceiling fan support**
- D. A weather resistance rating**

A fixture box intended to support a ceiling fan should have a rating specifically designed for ceiling fan support to ensure safety and effectiveness. Ceiling fans can be considerably heavier than standard light fixtures, and they also experience dynamic forces due to their movement. The specific rating indicates that the box has been tested and certified to hold the weight and withstand the stress of operating ceiling fans, ensuring it will not loosen or detach over time. This certification is critical for maintaining the structural integrity and safety of the installation, as improper support could lead to fan failure or accidents. Moreover, while other ratings such as a generic electrical rating may be important for general electrical safety, they do not address the unique demands posed by a ceiling fan's installation. Similarly, a weather resistance rating is relevant for outdoor applications but does not speak to the ceiling fan's specific support needs. Thus, a dedicated rating for ceiling fan support is essential for ensuring that the installation adheres to safety standards and provides reliable performance.

6. What is the minimum fire rating for electrical vaults housing electrical equipment over 600 volts?

- A. 1 hour**
- B. 2 hours**
- C. 3 hours**
- D. 4 hours**

The minimum fire rating for electrical vaults housing electrical equipment over 600 volts is established based on the need for safety and fire protection in buildings. A three-hour fire rating helps ensure that in the event of an electrical fire, the vault can contain the fire for an extended period, allowing for safe evacuation of occupants and providing sufficient time for firefighting efforts. This extended duration minimizes the risk of fire spreading to adjacent areas, which is crucial when dealing with high-voltage electrical equipment that has the potential to cause significant damage and presents safety risks. A one-hour or two-hour fire rating, while helpful, may not offer adequate protection for the higher energy densities and potential fire hazards associated with equipment operating above 600 volts. The four-hour rating, while also beneficial, is more stringent than what is typically required, making three hours the appropriate standard for balancing safety requirements and practicality for electrical vaults in this context.

7. What does "hardwired" refer to in electrical installations?

- A. Devices that are easily removable
- B. Battery-operated devices
- C. Devices that are permanently connected to the electrical system**
- D. Devices that use wireless connections

The term "hardwired" in electrical installations specifically refers to devices that are permanently connected to the electrical system. This means that these devices are integrated into the building's wiring and typically require electrical connections to be made directly to circuit wires. Hardwired devices are often installed in a way that makes them less prone to failure due to external factors and ensures a stable and consistent power supply, unlike removable or battery-operated devices. In contrast, easily removable devices might be plugged into outlets, battery-operated devices rely on batteries for power, and devices that use wireless connections do not require physical wiring to the electrical system. Thus, "hardwired" highlights the permanent and direct integration of devices into the electrical infrastructure.

8. Which conductor size is required for a 20-amp residential branch circuit?

- A. 10 AWG
- B. 12 AWG**
- C. 14 AWG
- D. 16 AWG

For a 20-amp residential branch circuit, the appropriate conductor size is 12 AWG. This size is commonly used in residential wiring because it is designed to handle the ampacity required safely for a 20-amp load. The National Electrical Code (NEC) specifies that a 12 AWG copper wire can carry up to 20 amps under normal conditions, which include typical temperature ratings and installation practices. Choosing a conductor that is too small could lead to overheating and increase the risk of fire hazards, while a larger conductor size, such as 10 AWG, would not be necessary for a 20-amp circuit and could complicate installation without any additional benefit. Thus, 12 AWG is the standard and most efficient choice for this amperage application.

9. What is the minimum depth for burying direct-burial cable?

- A. 12 inches
- B. 18 inches
- C. 24 inches**
- D. 30 inches

The minimum depth for burying direct-burial cable is 24 inches. This specific depth requirement is in place to ensure the protection of the cable from physical damage due to soil movement, surface activities, and environmental factors. Additionally, burying the cable to this depth helps to prevent accidental disturbances, such as digging, which could lead to cable exposure or damage. Regulations may vary by region, but 24 inches is a widely accepted standard to provide an optimal safety margin. This depth ensures the cable is adequately shielded while also facilitating proper installation practices.

10. How much power is lost at a bad splice with a measured resistance of 0.5 ohms in a circuit drawing 40 amperes?

- A. 400 watts**
- B. 600 watts**
- C. 800 watts**
- D. 1000 watts**

To determine the power lost at a bad splice with a measured resistance of 0.5 ohms while drawing 40 amperes, we can use the formula for power loss due to resistance in a circuit, which is given by $(P = I^2 \times R)$. In this case, we have: - $(I = 40)$ amperes (the current flowing through the circuit) - $(R = 0.5)$ ohms (the resistance at the splice) Substituting these values into the formula gives: $(P = 40^2 \times 0.5)$ $(P = 1600 \times 0.5)$ $(P = 800 \text{ watts})$ This calculation shows that when the current of 40 amperes flows through a splice with a resistance of 0.5 ohms, it results in a power loss of 800 watts due to the resistance. Such power loss can result in decreased efficiency and increased heat generation in the circuit, which can be critical for the safety and performance of electrical systems.

SAMPLE

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://psijourneymanonline.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE