

Praxis Elementary Education: Science (5005) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which of the following is an example of a non-renewable resource?**
 - A. Wind**
 - B. Hydropower**
 - C. Coal**
 - D. Solar energy**

- 2. What is the primary role of flowers in flowering plants?**
 - A. To absorb water from the soil**
 - B. To facilitate reproduction**
 - C. To provide shade and protection**
 - D. To conduct photosynthesis**

- 3. What is the primary role of bile in the digestive system?**
 - A. Store vitamins**
 - B. Break down fats**
 - C. Absorb nutrients**
 - D. Produce insulin**

- 4. What type of energy transformation occurs when a battery powers a flashlight?**
 - A. Chemical energy to thermal energy**
 - B. Chemical energy to electrical energy**
 - C. Electrical energy to mechanical energy**
 - D. Mechanical energy to chemical energy**

- 5. What happens to the moon after it reaches a full moon?**
 - A. It is waxing**
 - B. It remains full**
 - C. It is waning**
 - D. It is in a new moon phase**

6. Which of the following best describes the lithosphere according to plate tectonic theory?

- A. It is composed solely of igneous rock**
- B. It is made up of major and minor plates**
- C. It exists underneath the Earth's crust**
- D. It is a liquid layer surrounding the core**

7. What defines a chemical change?

- A. A process that alters the physical appearance of substances**
- B. A process that involves the transformation of substances into new substances with different chemical properties**
- C. A reversible process that maintains the original properties of substances**
- D. A process that changes the state of matter without altering its composition**

8. What is a chemical reaction?

- A. A process that results in a change in physical properties**
- B. A process in which substances combine and transform into different substances**
- C. A process that only occurs under high temperature conditions**
- D. A process that occurs exclusively in living organisms**

9. Which environmental factor is crucial in maintaining healthy ecosystems?

- A. Monoculture agriculture**
- B. Biodiversity**
- C. Industrial development**
- D. Pesticide use**

10. What is the repeating unit of a polymer called?

- A. Composite**
- B. Polymerase**
- C. Monomer**
- D. Macromolecule**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. C
6. B
7. B
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. Which of the following is an example of a non-renewable resource?

- A. Wind**
- B. Hydropower**
- C. Coal**
- D. Solar energy**

Coal is classified as a non-renewable resource because it forms over millions of years from the remains of ancient plants and animals buried under layers of earth. The process of its formation is incredibly slow, meaning that once coal reserves are depleted, they cannot be replenished on a human timescale. In contrast, resources such as wind, hydropower, and solar energy are renewable because they are replenished naturally and can be harnessed indefinitely without depleting the source. Wind energy is created by the Earth's atmospheric processes, hydropower relies on the water cycle, and solar energy is generated from sunlight, all of which are continuously available. Thus, coal's finite nature categorizes it distinctly as a non-renewable resource.

2. What is the primary role of flowers in flowering plants?

- A. To absorb water from the soil**
- B. To facilitate reproduction**
- C. To provide shade and protection**
- D. To conduct photosynthesis**

The primary role of flowers in flowering plants is to facilitate reproduction. Flowers are the reproductive structures that contain the organs necessary for the sexual reproduction process. The male parts, known as stamens, produce pollen, while the female part, called the pistil, contains the ovary where ovules are housed. During pollination, pollen from the stamen can fertilize the ovules in the ovary, leading to the formation of seeds. This reproductive process allows for genetic diversity among plants and is essential for the continuation of species. While flowers can have other functions, such as attracting pollinators with their scent and color, their main biological purpose revolves around enabling reproduction, ensuring that flowering plants can produce new offspring to sustain their populations.

3. What is the primary role of bile in the digestive system?

- A. Store vitamins**
- B. Break down fats**
- C. Absorb nutrients**
- D. Produce insulin**

The primary role of bile in the digestive system is to break down fats. Bile is a digestive fluid produced by the liver and stored in the gallbladder. When fatty foods enter the small intestine, bile is released to emulsify these fats, which means it breaks them down into smaller droplets. This emulsification increases the surface area of fats, making it easier for digestive enzymes to access and further digest them into fatty acids and glycerol. This process is crucial for the proper absorption of fats and fat-soluble vitamins in the intestines. The other options, while related to various functions in the body, do not represent the primary function of bile. Storing vitamins, absorbing nutrients, and producing insulin involve different organs and processes in the body that are separate from the action of bile in fat digestion.

4. What type of energy transformation occurs when a battery powers a flashlight?

- A. Chemical energy to thermal energy**
- B. Chemical energy to electrical energy**
- C. Electrical energy to mechanical energy**
- D. Mechanical energy to chemical energy**

When a battery powers a flashlight, the transformation that takes place is from chemical energy to electrical energy. Inside a battery, chemical reactions occur that convert stored chemical energy into electrical energy, which is then used to power the flashlight. This electrical energy flows through the circuit in the flashlight and ultimately enables the light bulb to emit light. The other types of energy transformations listed do not accurately describe the process occurring in this scenario. For instance, while the flashlight does generate some thermal energy during operation, the primary transformation involves the initial conversion of chemical energy in the battery to electrical energy used for lighting. Mechanical energy is not relevant to the flashlight's operation powered by a battery since the light is produced through the flow of electricity, and there is no transformation from mechanical energy to chemical energy occurring in this context.

5. What happens to the moon after it reaches a full moon?

- A. It is waxing**
- B. It remains full**
- C. It is waning**
- D. It is in a new moon phase**

After the moon reaches a full moon phase, it begins to transition into the waning phase. This is a natural progression in the lunar cycle, where the visible illuminated portion of the moon decreases after reaching its maximum brightness at the full moon. The term "waning" refers to this reduction in visibility, indicating that the moon is moving towards the new moon phase, where it will eventually be completely dark and not visible from Earth. This process contrasts with the earlier phase of waxing, where the moon's illuminated portion increases leading up to the full moon. Understanding this lunar cycle is fundamental in astronomy and helps explain the changing appearance of the moon over approximately a 29.5-day period.

6. Which of the following best describes the lithosphere according to plate tectonic theory?

- A. It is composed solely of igneous rock**
- B. It is made up of major and minor plates**
- C. It exists underneath the Earth's crust**
- D. It is a liquid layer surrounding the core**

The lithosphere is best described as being made up of major and minor plates. This component of the Earth's structure includes the crust and the uppermost part of the mantle, which together form the rigid outer layer of the Earth. The lithosphere is divided into tectonic plates that float on the semi-fluid asthenosphere beneath. These plates can interact in various ways, leading to geological phenomena such as earthquakes, volcanic activity, and mountain-building processes. While the lithosphere includes a variety of rock types, it is not solely composed of igneous rock, and it is not a liquid layer nor does it exist underneath the crust; instead, it encompasses the entire crust and the upper mantle. This understanding is fundamental in the study of plate tectonics and how these interacting layers shape the Earth's surface.

7. What defines a chemical change?

- A. A process that alters the physical appearance of substances**
- B. A process that involves the transformation of substances into new substances with different chemical properties**
- C. A reversible process that maintains the original properties of substances**
- D. A process that changes the state of matter without altering its composition**

A chemical change is characterized by a transformation where substances are converted into new substances with distinct chemical properties. This process means that the molecular structure of the original substances undergoes a modification, resulting in substances that have different chemical compositions and characteristics. For example, when you burn wood, it reacts with oxygen to form ash, carbon dioxide, and water vapor—new substances that possess unique properties compared to the original wood. The other options describe processes that may involve changes in appearance or state but do not capture the core aspect of a chemical change, which is the formation of new substances. Changes that alter physical appearance or involve reversible processes maintain the original substances' chemical composition and are not chemical changes. Hence, the focus on the transformation into new substances with different properties is what distinctly defines a chemical change.

8. What is a chemical reaction?

- A. A process that results in a change in physical properties
- B. A process in which substances combine and transform into different substances**
- C. A process that only occurs under high temperature conditions
- D. A process that occurs exclusively in living organisms

A chemical reaction is a process in which substances interact, resulting in the formation of new substances with different chemical and physical properties compared to the original ones. This transformation often involves the breaking and forming of bonds between atoms, leading to a change in the composition of matter. In the context of the other options, a change in physical properties refers to physical changes such as phase transitions (like melting or freezing), which do not involve a chemical transformation. The option suggesting that chemical reactions only occur under high-temperature conditions is too restrictive; many chemical reactions can and do occur at various temperatures. Similarly, stating that these reactions occur exclusively in living organisms overlooks the numerous chemical reactions that take place in inorganic contexts and everyday life, such as combustion, rusting, and reacting acids with bases. Thus, the essence of a chemical reaction is accurately captured in the explanation that involves substances combining and transforming into different substances.

9. Which environmental factor is crucial in maintaining healthy ecosystems?

- A. Monoculture agriculture
- B. Biodiversity**
- C. Industrial development
- D. Pesticide use

Biodiversity is crucial in maintaining healthy ecosystems because it refers to the variety of life forms, including different species of plants, animals, and microorganisms, as well as the genetic diversity within those species and the ecosystems they form. High levels of biodiversity contribute to ecosystem resilience, allowing communities to adapt to changes such as climate fluctuations, disease outbreaks, and habitat destruction. They provide ecosystem services that are vital for human survival, such as pollination, water purification, and soil fertility. In ecosystems with rich biodiversity, species often fulfill multiple roles and functions, which helps stabilize the ecosystem's structure and processes. The interconnectedness and interdependence among species support food webs and nutrient cycling, demonstrating that ecosystems thrive when they are diverse. Promoting biodiversity also enhances the chances of discovering new resources, including medicines and agricultural varieties, making it a key factor in sustainable environmental health.

10. What is the repeating unit of a polymer called?

- A. Composite**
- B. Polymerase**
- C. Monomer**
- D. Macromolecule**

The repeating unit of a polymer is called a monomer. A monomer is a small molecule that can join with other similar or identical molecules to form a larger structure known as a polymer. For example, in the case of polyethylene, the repeating unit (or monomer) is ethylene. When many ethylene units are chemically bonded together, they create the polymer polyethylene. Understanding the role of the monomer is crucial in polymer chemistry, as it is the building block that defines the properties and characteristics of the resulting polymer. In contrast, a macromolecule refers to a very large molecule typically made up of thousands of atoms, which includes polymers but is a broader term. A polymerase is an enzyme that synthesizes polymers, particularly nucleic acids or proteins, and a composite refers to a material made from two or more constituent materials with significantly different physical or chemical properties.

SAMPLE

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://praxis5005.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE