

Portage Learning Pathophysiology Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. In case of finding a clot during ischemic stroke assessment, what treatment is indicated?**
 - A. Re-perfusion via catheter methods**
 - B. Intravenous antibiotics**
 - C. Bed rest and observation**
 - D. Surgical intervention**
- 2. Which of the following is FALSE regarding sickle cell disease?**
 - A. Average red cell lifespan is 60 days**
 - B. Red cells are permanently distorted into a sickle shape**
 - C. Patients may experience pain crises**
 - D. It is an inherited form of anemia**
- 3. What is the mechanism of action for diuretics in managing hypertension?**
 - A. Decrease vasoconstriction**
 - B. Lower blood pressure by decreasing vascular volume**
 - C. Increase heart contractility**
 - D. Enhance sodium retention**
- 4. Which type of reaction is characterized by mast cells releasing histamine leading to allergic symptoms?**
 - A. Type I hypersensitivity**
 - B. Type II hypersensitivity**
 - C. Type III hypersensitivity**
 - D. Type IV hypersensitivity**
- 5. During which cellular process do cells replicate and divide, increasing their numbers?**
 - A. Cell differentiation**
 - B. Cell metabolism**
 - C. Cell proliferation**
 - D. Cell specialization**

6. True or False: Target cells must have receptors to recognize a hormone.

A. True
B. False

7. What is a common non-pharmacologic recommendation for a patient with gout?

A. Increase alcohol intake
B. Avoid hydration
C. Maintain a healthy weight
D. Consume high-purine foods

8. Which of the following is characteristic of chronic transplant rejection?

A. It involves humoral immunity
B. It responds well to immunosuppressive therapy
C. It involves increased T lymphocytes
D. It occurs immediately after transplant

9. Which lab value will typically NOT be elevated in a bacterial infection?

A. Lymphocytes
B. Eosinophils
C. Neutrophils
D. Monocytes

10. How does cell density-dependent inhibition function in normal cells as compared to cancer cells?

A. Normal cells stop growing when in contact with each other
B. Cancer cells stop growing when in contact with each other
C. Both types of cells grow indefinitely
D. Normal cells grow indefinitely

Answers

SAMPLE

- 1. A**
- 2. A**
- 3. B**
- 4. A**
- 5. C**
- 6. A**
- 7. C**
- 8. A**
- 9. A**
- 10. A**

SAMPLE

Explanations

SAMPLE

1. In case of finding a clot during ischemic stroke assessment, what treatment is indicated?

A. Re-perfusion via catheter methods

B. Intravenous antibiotics

C. Bed rest and observation

D. Surgical intervention

In the case of finding a clot during an ischemic stroke assessment, the indicated treatment is re-perfusion via catheter methods. This approach, commonly referred to as mechanical thrombectomy, involves using a catheter to access the blocked blood vessel and physically remove the clot. Prompt restoration of blood flow to the affected area of the brain is crucial, as it minimizes brain damage and improves outcomes. Re-perfusion therapies are particularly effective for patients who meet certain criteria, such as having a blocked artery and within a specific time window from the onset of symptoms. This intervention can significantly enhance the chances of recovery by restoring oxygenated blood flow to the neurons at risk of dying due to lack of perfusion. Other treatment options, such as intravenous antibiotics or bed rest and observation, do not address the underlying issue of blood flow obstruction caused by the clot. Surgical interventions might be necessary in some cases, but they are generally considered after other less invasive methods have been tried or if there are complications that require surgery. Overall, timely re-perfusion through catheter methods offers the best chance of minimizing damage during an ischemic stroke.

2. Which of the following is FALSE regarding sickle cell disease?

A. Average red cell lifespan is 60 days

B. Red cells are permanently distorted into a sickle shape

C. Patients may experience pain crises

D. It is an inherited form of anemia

The statement about the average red cell lifespan being 60 days is incorrect. In sickle cell disease, the average lifespan of red blood cells is typically much shorter than that of normal red blood cells, which usually live around 120 days. In sickle cell disease, the sickle-shaped red blood cells can become rigid and prone to hemolysis, leading to their destruction within about 10 to 20 days. This shortened lifespan contributes to the anemia seen in patients with sickle cell disease, as their bodies cannot produce red blood cells quickly enough to replace the ones that are dying. The other statements accurately describe aspects of sickle cell disease. Red blood cells indeed can become permanently distorted into the sickle shape, especially under conditions of low oxygen. Pain crises, also known as vaso-occlusive crises, can occur when sickled cells block the flow of blood through small vessels, causing intense pain. Lastly, sickle cell disease is an inherited form of anemia that is transmitted in an autosomal recessive pattern, meaning that a child must inherit two copies of the mutated gene, one from each parent, to express the disease.

3. What is the mechanism of action for diuretics in managing hypertension?

- A. Decrease vasoconstriction**
- B. Lower blood pressure by decreasing vascular volume**
- C. Increase heart contractility**
- D. Enhance sodium retention**

Diuretics manage hypertension primarily by lowering blood pressure through the reduction of vascular volume. They achieve this by promoting the excretion of sodium and water from the kidneys. As sodium is reabsorbed in the renal tubules, water follows osmotically; therefore, increased sodium excretion leads to increased water loss, resulting in a decreased volume of fluid in the circulatory system. This reduction in blood volume lowers the pressure within the blood vessels, effectively reducing blood pressure. This mechanism is crucial for patients with hypertension, as it addresses one of the underlying factors contributing to elevated blood pressure. When the volume of blood circulating through the vasculature is lower, there is less force exerted against the vessel walls, leading to a decrease in blood pressure. Other options do not accurately represent the primary action of diuretics. For example, diuretics are not directly decreasing vasoconstriction or enhancing heart contractility, nor do they promote sodium retention. Instead, they focus on promoting the excretion of sodium and water, leading to the desired effect of reduced hypertension.

4. Which type of reaction is characterized by mast cells releasing histamine leading to allergic symptoms?

- A. Type I hypersensitivity**
- B. Type II hypersensitivity**
- C. Type III hypersensitivity**
- D. Type IV hypersensitivity**

Type I hypersensitivity is characterized by the rapid immune response involving mast cells and the release of histamine. This reaction typically occurs upon the first exposure to an allergen, where allergenic proteins bind to IgE antibodies that are attached to the surfaces of mast cells. Upon subsequent exposure to the same allergen, cross-linking of IgE occurs, triggering the degranulation of mast cells. This degranulation process releases histamine and other chemical mediators, leading to the classic symptoms of allergic reactions, such as itching, swelling, and bronchoconstriction. Understanding the mechanism behind Type I hypersensitivity helps clarify its distinction from other types. Type II hypersensitivity involves antibody-mediated destruction of cells, often through mechanisms such as complement activation or antibody-dependent cellular cytotoxicity. Type III hypersensitivity is characterized by immune complex formation, leading to localized inflammation and tissue damage. Type IV hypersensitivity, on the other hand, is a delayed-type reaction mediated by T cells rather than antibodies and does not involve histamine release. Thus, the symptoms and timing of Type I hypersensitivity reactions are specifically related to mast cell activity and histamine release, which effectively makes it the correct choice for this question.

5. During which cellular process do cells replicate and divide, increasing their numbers?

- A. Cell differentiation**
- B. Cell metabolism**
- C. Cell proliferation**
- D. Cell specialization**

Cell proliferation refers to the process by which cells undergo replication and division, resulting in an increase in cell numbers. This is a fundamental aspect of growth, development, and tissue repair in multicellular organisms. During cell proliferation, cells go through various phases, including the cell cycle phases of interphase and mitosis, ultimately leading to the formation of two daughter cells from a single parent cell. In the context of the other options, while cell differentiation involves the process where a less specialized cell becomes a more specialized cell type, it does not necessarily refer to an increase in cell numbers. Similarly, cell metabolism pertains to the chemical reactions that occur within a cell to maintain life, which includes processes like energy production and synthesis of cellular components, but does not imply replication or increase in cell numbers. Cell specialization, on the other hand, refers to the process through which cells develop distinct structures and functions, also without a direct connection to the increase in cell quantities. Therefore, the focus on replication and division in the context of increasing cell numbers distinctly aligns with the concept of cell proliferation.

6. True or False: Target cells must have receptors to recognize a hormone.

- A. True**
- B. False**

The correct response is that it is true that target cells must have receptors to recognize a hormone. Hormones exert their effects on specific target cells through binding to their respective receptors. These receptors are typically proteins located on the cell membrane or inside the target cell. When a hormone binds to its receptor, it initiates a series of cellular responses that lead to the desired effect, such as changes in gene expression, metabolism, or cellular function. Without the presence of these receptors, target cells would be unable to recognize or respond to the hormone, which would mean that the hormone's signaling function would be ineffective. This principle is fundamental to endocrinology and explains how hormones can exert highly specific effects on particular tissues while circulating throughout the body. Therefore, the statement that target cells must have receptors to recognize a hormone is indeed true.

7. What is a common non-pharmacologic recommendation for a patient with gout?

- A. Increase alcohol intake**
- B. Avoid hydration**
- C. Maintain a healthy weight**
- D. Consume high-purine foods**

Maintaining a healthy weight is a common non-pharmacologic recommendation for patients with gout because obesity can contribute to increased uric acid levels in the body. When body weight is reduced, it helps lower the production of uric acid and enhances its excretion through the kidneys. This can lead to a decrease in the frequency and severity of gout attacks. In contrast, the other options suggest behaviors that could exacerbate gout. Increasing alcohol intake can lead to higher uric acid levels, as certain types of alcohol, particularly beer, contain a significant amount of purines. Avoiding hydration would also be detrimental, as dehydration can impair the kidneys' ability to excrete uric acid effectively, leading to higher serum levels. Consuming high-purine foods, such as red meat and certain seafood, can elevate uric acid levels, increasing the risk of gout flare-ups.

8. Which of the following is characteristic of chronic transplant rejection?

- A. It involves humoral immunity**
- B. It responds well to immunosuppressive therapy**
- C. It involves increased T lymphocytes**
- D. It occurs immediately after transplant**

Chronic transplant rejection is primarily a complex immunological process that occurs over a prolonged period, typically months to years after transplantation. One of the distinguishing characteristics of chronic rejection is its association with humoral immunity, which involves the activation of B cells and the production of antibodies against the donor organ's antigens. This process can lead to the formation of antibodies that cause gradual damage to the transplanted tissue, characterized by a slow but progressive loss of function. In contrast, the other options highlight features that do not align with the nature of chronic transplant rejection. For instance, while T lymphocytes do play a role in various types of immune responses, increased T lymphocyte activity is more typically associated with acute rejection, rather than chronic rejection. Additionally, chronic rejection often does not respond well to immunosuppressive therapy; instead, the damage has usually progressed to a point where therapeutic interventions are less effective. Lastly, chronic rejection does not occur immediately after transplantation, as it develops over an extended timeline, whereas immediate rejection reactions are characteristic of acute rejection. Understanding these nuances helps in differentiating between the various forms of rejection following a transplant.

9. Which lab value will typically NOT be elevated in a bacterial infection?

- A. Lymphocytes**
- B. Eosinophils**
- C. Neutrophils**
- D. Monocytes**

In the context of a bacterial infection, lymphocytes typically do not see an elevation in their levels as a response compared to other white blood cells. Bacterial infections usually prompt the immune system to produce a higher number of neutrophils, as these cells are primarily responsible for responding to bacterial pathogens. Therefore, during a bacterial infection, neutrophil counts tend to be elevated. Eosinophils, while they can be elevated in parasitic infections or allergic reactions, are not typically involved in the response to bacterial infections. Monocytes may also be elevated in some cases, particularly in chronic infections or later stages of acute infections. Lymphocytes, on the other hand, are more closely associated with viral infections and certain chronic inflammatory processes. In acute bacterial infections, the body largely relies on neutrophils as the frontline defenders, whereas lymphocytes do not play a primary role under these conditions, leading to their levels generally remaining stable or even decreasing during significant bacterial infections.

10. How does cell density-dependent inhibition function in normal cells as compared to cancer cells?

- A. Normal cells stop growing when in contact with each other**
- B. Cancer cells stop growing when in contact with each other**
- C. Both types of cells grow indefinitely**
- D. Normal cells grow indefinitely**

Cell density-dependent inhibition is a regulatory mechanism that is critical for maintaining normal tissue architecture and function. In normal cells, this phenomenon occurs when cells reach a certain density and effectively signal to each other to stop proliferating. As they come into contact with one another, this intercellular communication leads to a halt in cell division, preventing overcrowding and allowing tissues to maintain their structure and proper function. In contrast, cancer cells exhibit a loss of this growth control mechanism. They can continue to divide and grow despite being in close proximity to each other, which contributes to tumor formation and progression. Essentially, cancer cells ignore the signals that promote density-dependent inhibition, allowing for uncontrolled growth and the potential to invade surrounding tissues. This difference highlights the importance of cell communication and regulatory pathways in maintaining normal physiological processes, and underscores how cancer cells disrupt these processes leading to malignancy.