

Portage Biochemistry Module 1 Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

1. What type of organisms are classified under the domain Eukarya?

- A. Prokaryotes such as bacteria**
- B. Simple single-celled organisms**
- C. Complex multicellular organisms including animals and plants**
- D. Only fungi and algae**

2. What is the primary function of the rough endoplasmic reticulum (ER)?

- A. Store calcium ions**
- B. Synthesize and process proteins**
- C. Produce lipids and carbohydrates**
- D. Transport genetic material**

3. What dual role does the endoplasmic reticulum play in the cell?

- A. Protein synthesis and carbohydrate storage**
- B. Protein synthesis and detoxification**
- C. Lipid synthesis and RNA transport**
- D. Gene expression and metabolic regulation**

4. What is the main purpose of mitochondria in eukaryotic cells?

- A. Digestion of cellular waste**
- B. Production of energy in the form of ATP**
- C. Storage of lipids and carbohydrates**
- D. Maintenance of cellular structure**

5. What process involves the conversion of glucose to ATP in cells?

- A. Photosynthesis**
- B. Respiration**
- C. Fermentation**
- D. Glycolysis**

6. What are biomolecules?

- A. Small organic molecules**
- B. Molecules held within a cell or excreted by cells**
- C. Synthetic compounds created in a lab**
- D. Metals and inorganic substances**

7. What allows molecules to cross the plasma membrane?

- A. Passive diffusion of all substances**
- B. Selective passage through lipids**
- C. Proteins in the membrane facilitating transport**
- D. Covalent bonding with membrane components**

8. Which statement about nucleotides is correct?

- A. Nucleotides are the building blocks of lipids**
- B. Nucleotides consist of amino acids, a sugar, and a phosphate**
- C. Nucleotides are made up of a nitrogenous base, a sugar, and a phosphate group**
- D. Nucleotides function solely in energy storage**

9. What is the primary focus of organic chemistry?

- A. Metals and minerals**
- B. Chemical and physical properties of carbon compounds**
- C. Properties of non-organic materials**
- D. Cyclic compound structures only**

10. What percentage of living things is made up of water?

- A. 50%**
- B. 70%**
- C. 90%**
- D. 100%**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. B
6. B
7. C
8. C
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What type of organisms are classified under the domain Eukarya?

- A. Prokaryotes such as bacteria**
- B. Simple single-celled organisms**
- C. Complex multicellular organisms including animals and plants**
- D. Only fungi and algae**

Organisms classified under the domain Eukarya are characterized by having complex cellular structures that include a defined nucleus and membrane-bound organelles. This domain encompasses a diverse range of life forms including complex multicellular organisms like animals and plants, which exhibit higher levels of organization and specialization compared to simpler forms of life. Additionally, Eukarya includes various unicellular organisms as well, such as protists, which can be quite complex. The key distinguishing feature of Eukarya is the presence of eukaryotic cells that have the capability to form multicellular structures, leading to diverse life forms that interact in various ecological systems. This broad classification captures the complexity of life found in animals, plants, fungi, and certain protists, setting it apart from other domains that contain primarily simpler or unicellular organisms.

2. What is the primary function of the rough endoplasmic reticulum (ER)?

- A. Store calcium ions**
- B. Synthesize and process proteins**
- C. Produce lipids and carbohydrates**
- D. Transport genetic material**

The rough endoplasmic reticulum (ER) plays a crucial role in the synthesis and processing of proteins. It is characterized by the presence of ribosomes attached to its cytoplasmic surface, which give it a "rough" appearance. These ribosomes are the sites of protein translation, where polypeptide chains are synthesized based on the genetic code from messenger RNA (mRNA). Once the proteins are synthesized, they enter the lumen of the rough ER, where they can undergo folding and modifications, such as glycosylation (adding carbohydrate groups) or forming disulfide bonds. This processing is essential for the proteins to achieve their functional conformations. Additionally, the rough ER is involved in the initial steps of protein sorting, directing proteins either for secretion outside the cell, delivery to the cell membrane, or localization to specific organelles. In contrast, the other listed functions do not appropriately align with the primary role of the rough ER. While it does not primarily store calcium ions, produce lipids and carbohydrates, or transport genetic material, its specialized function in protein synthesis and processing sets it apart in cellular activities.

3. What dual role does the endoplasmic reticulum play in the cell?

- A. Protein synthesis and carbohydrate storage**
- B. Protein synthesis and detoxification**
- C. Lipid synthesis and RNA transport**
- D. Gene expression and metabolic regulation**

The endoplasmic reticulum (ER) serves as a crucial organelle in cells with a dual role that includes protein synthesis and detoxification. In terms of protein synthesis, the rough endoplasmic reticulum is studded with ribosomes, which are the sites of translation where messenger RNA (mRNA) is converted into polypeptide chains. These newly synthesized proteins can be those destined for secretion, incorporation into the cell membrane, or for use within various organelles. As for detoxification, the smooth endoplasmic reticulum is involved in the metabolism of various substances, including the detoxification of drugs and toxins. It houses enzymes that modify these compounds, making them more water-soluble and easier to excrete from the body. This detoxifying function is particularly important in liver cells, which are heavily involved in processing various metabolic byproducts. This dual functionality highlights the versatile roles the endoplasmic reticulum plays in maintaining cellular health and metabolic balance. The other options focus on functions that either do not fully represent the significant roles of the ER or combine processes that are not primarily attributed to this organelle.

4. What is the main purpose of mitochondria in eukaryotic cells?

- A. Digestion of cellular waste**
- B. Production of energy in the form of ATP**
- C. Storage of lipids and carbohydrates**
- D. Maintenance of cellular structure**

The main purpose of mitochondria in eukaryotic cells is the production of energy in the form of ATP. Mitochondria are often referred to as the "powerhouses" of the cell because they play a critical role in cellular respiration, where glucose and oxygen are utilized to produce ATP. This process involves a series of biochemical reactions, including glycolysis, the citric acid cycle, and oxidative phosphorylation, all of which occur within the mitochondria. Mitochondria have their own DNA and are involved in several other important functions, such as regulating metabolic pathways and cell signaling, as well as the process of apoptosis (programmed cell death). However, their primary and most vital function remains the production of ATP, which is essential for driving the myriad of energy-requiring processes within the cell. In the context of the other options, digestion of cellular waste is typically carried out by lysosomes rather than mitochondria, while storage of lipids and carbohydrates is a function of organelles like the smooth endoplasmic reticulum and vacuoles. The maintenance of cellular structure primarily involves the cytoskeleton and other structural components, rather than the mitochondria themselves. Thus, the correct answer underscores the central role of mitochondria in energy

5. What process involves the conversion of glucose to ATP in cells?

- A. Photosynthesis**
- B. Respiration**
- C. Fermentation**
- D. Glycolysis**

The process that involves the conversion of glucose to ATP in cells is known as respiration. This metabolic pathway encompasses various stages, including glycolysis, the citric acid cycle, and oxidative phosphorylation. During respiration, glucose is broken down to produce ATP, which is the primary energy currency of the cell. In aerobic respiration, glucose undergoes glycolysis to form pyruvate, which is then transported into the mitochondria for further processing in the citric acid cycle. This cycle generates electron carriers that are used in the electron transport chain to produce a significant amount of ATP through oxidative phosphorylation. Under anaerobic conditions, cells may resort to fermentation, which also begins with glycolysis and can generate ATP but is less efficient than aerobic respiration. Photosynthesis is primarily concerned with converting carbon dioxide and water into glucose and oxygen, using sunlight as an energy source. While it produces glucose, it does not directly involve converting glucose into ATP. Glycolysis is indeed part of the respiration process, but it alone does not represent the entire pathway of converting glucose to ATP. Thus, respiration is the correct term that encompasses the whole process of energy extraction from glucose.

6. What are biomolecules?

- A. Small organic molecules**
- B. Molecules held within a cell or excreted by cells**
- C. Synthetic compounds created in a lab**
- D. Metals and inorganic substances**

Biomolecules are fundamental components of living organisms and are typically defined as molecules that are either produced within cells or are released by cells. This definition encompasses a variety of substances, such as carbohydrates, proteins, lipids, and nucleic acids, which play critical roles in biological processes. By focusing on the molecular structures associated with life, option B accurately captures the essence of biomolecules as they are integral to cellular function and organization. In contrast, the other options refer to either smaller molecules that may not be biologically relevant, synthetic substances not naturally occurring in living systems, or inorganic elements that do not fit the definition of biomolecules. Understanding biomolecules is key to studying life sciences and biochemistry, as they are involved in metabolism, information storage, and structural integrity of cells and organisms.

7. What allows molecules to cross the plasma membrane?

- A. Passive diffusion of all substances**
- B. Selective passage through lipids**
- C. Proteins in the membrane facilitating transport**
- D. Covalent bonding with membrane components**

The ability of molecules to cross the plasma membrane is significantly influenced by the presence of proteins embedded in the membrane that facilitate transport. These membrane proteins play crucial roles in selectively allowing certain molecules to enter or exit the cell, a process known as facilitated diffusion. Depending on their structure, these proteins can provide channels or act as carriers that specifically recognize and bind to particular substances, enabling their passage across the lipid bilayer. For example, ion channels allow the selective passage of ions based on size and charge, while transporters can move larger molecules like glucose into the cell. This process is vital for maintaining cellular homeostasis and responding to changes in the cellular environment. While passive diffusion can allow certain small, non-polar molecules to traverse the membrane on their own, it does not apply to all substances. The lipid bilayer is also selectively permeable; certain larger and polar molecules cannot simply diffuse through it without assistance. Therefore, the role of proteins in the membrane is essential for the transport of a wide range of substances, making them fundamental for proper cellular function.

8. Which statement about nucleotides is correct?

- A. Nucleotides are the building blocks of lipids**
- B. Nucleotides consist of amino acids, a sugar, and a phosphate**
- C. Nucleotides are made up of a nitrogenous base, a sugar, and a phosphate group**
- D. Nucleotides function solely in energy storage**

Nucleotides are indeed made up of three components: a nitrogenous base, a sugar (which can be ribose or deoxyribose), and a phosphate group. This structure is fundamental to their role in biology. Nucleotides serve as the monomers that link together to form nucleic acids, such as DNA and RNA, which are essential for the storage and transmission of genetic information. In addition to forming nucleic acids, nucleotides also play several critical roles in cellular processes. For instance, they are involved in cell signaling (e.g., cyclic AMP), serve as coenzymes (e.g., NAD⁺, NADP⁺), and participate in energy transfer processes (e.g., ATP). Thus, while they are crucial for energy storage and transfer, their functions extend far beyond just energy-related roles. The correct structure of nucleotides allows them to fulfill these diverse functions effectively.

9. What is the primary focus of organic chemistry?

- A. Metals and minerals
- B. Chemical and physical properties of carbon compounds**
- C. Properties of non-organic materials
- D. Cyclic compound structures only

The primary focus of organic chemistry revolves around the chemical and physical properties of carbon compounds. This field of chemistry is dedicated to understanding how carbon atoms bond with each other and with other elements, leading to the formation of a vast array of substances that are foundational to life, such as carbohydrates, proteins, lipids, and nucleic acids. Organic compounds encompass a broad range of molecules, including simple hydrocarbons and complex polymers, displaying diverse functional groups that determine their reactivity and properties. This focus on carbon and its ability to form stable bonds with various elements enables the vast diversity of organic compounds. In contrast, other options, such as those related to metals, minerals, or non-organic materials, fall outside the core focus of organic chemistry. The study of cyclic compounds, while part of the broader scope of organic chemistry, is not representative of the entire discipline but rather a subset of the different structures that carbon can form. Understanding these foundational elements of organic chemistry is essential for grasping its applications in various scientific fields, including biochemistry, pharmacology, and materials science.

10. What percentage of living things is made up of water?

- A. 50%
- B. 70%**
- C. 90%
- D. 100%

The correct answer, which indicates that approximately 70% of living organisms are comprised of water, highlights the fundamental role of water in biological processes. Water serves as a critical solvent in which many biochemical reactions occur, facilitating the transport of nutrients and waste products within cells and throughout the body. This high percentage reflects water's essential contributions to the structure of cells, regulation of temperature, and maintenance of homeostasis. The abundance of water in living systems varies among different organisms, but the general estimate of around 70% underscores its universal importance across various forms of life. Considering this context, the other percentages suggest either a misunderstanding or oversimplification of water's role in biology, as they do not accurately represent the average composition of living organisms.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://portagebiochemmodule1.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE