Pilot Café Instrument Flight Rules (IFR) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. How do you calculate the rate of descent for a 3-degree glide slope?
 - A. Ground Speed x 10
 - B. Ground Speed x 2
 - C. Ground Speed x 5
 - D. Ground Speed x 0.5
- 2. If you need to lose 6000 feet of altitude, how far out should you start your descent on a 3-degree glide slope?
 - A. 10 NM
 - **B. 15 NM**
 - C. 20 NM
 - D. 25 NM
- 3. When flying a DME/GPS hold, what is the procedure during the outbound leg?
 - A. Hold at a specified altitude
 - B. Fly outbound leg to specified distance from fix/waypoint
 - C. Maintain heading for 1 minute
 - D. Circle back to the waypoint immediately
- 4. What is the requirement after failing to meet currency within the past 12 months?
 - A. Complete a flight review
 - B. File a new flight plan
 - C. Pass an instrument proficiency check by a CFII, examiner, or approved person
 - D. Reapply for the IFR rating
- 5. The High-Level Significant Weather Chart forecasts weather conditions primarily at what flight levels?
 - A. Below FI 100
 - B. From FL250 to FL630
 - C. Between FL100 to FL250
 - D. Above FL630

- 6. Above what altitude is the maximum speed in a holding pattern allowed to be 265 KIAS?
 - A. 10,000 feet
 - B. 14,000 feet
 - C. 18,000 feet
 - D. 20,000 feet
- 7. What is the timeframe within which you must notify ATC if your clearance is void?
 - A. 15 minutes
 - **B. 30 minutes**
 - C. 60 minutes
 - D. 90 minutes
- 8. Where are IFR flight plans typically required?
 - A. Class B airspace only
 - B. Class A airspace
 - C. All airspace regardless of flight rules
 - D. Only at airport terminals
- 9. Which document is necessary to ensure aircraft airworthiness?
 - A. Registration Certificate
 - **B. Operating Handbook**
 - C. Airworthiness Certificate
 - D. Weight and Balance calculations
- 10. Which advisory service is explicitly available only in Alaska?
 - A. DATALINK Weather
 - **B. En Route Flight Advisory Service**
 - C. Automatic Terminal Information System
 - **D.** Transcribed Weather Broadcast

Answers

- 1. C 2. C 3. B 4. C 5. B 6. B 7. B 8. B 9. C 10. D

Explanations

- 1. How do you calculate the rate of descent for a 3-degree glide slope?
 - A. Ground Speed x 10
 - B. Ground Speed x 2
 - C. Ground Speed x 5
 - D. Ground Speed x 0.5

To calculate the rate of descent for a 3-degree glide slope, you can use the formula related to your ground speed. The proper approach is to multiply your ground speed by 5. This is based on the fact that on a 3-degree glide slope, for every nautical mile you go horizontally, you descend approximately 300 feet vertically. Ground speed, when expressed in knots, directly correlates to the rate of descent at a 3-degree angle. Thus, if you take your ground speed in knots and multiply by 5, you're effectively converting that horizontal distance into a vertical descent over time. For example, if your ground speed is 100 knots, the calculation would yield a rate of descent of 500 feet per minute, which ensures you maintain the correct glide path toward the runway. This conversion assumes a consistent and stable flight path that adheres to the glide slope requirements, making it essential for precision approach and landing procedures.

- 2. If you need to lose 6000 feet of altitude, how far out should you start your descent on a 3-degree glide slope?
 - A. 10 NM
 - **B. 15 NM**
 - C. 20 NM
 - D. 25 NM

To determine the appropriate distance to begin your descent when transitioning to a lower altitude on a 3-degree glide slope, you can use a formula that correlates altitude loss with distance. The rule of thumb used by pilots is that for every 1,000 feet of altitude you wish to lose, you should plan to descend about 3 nautical miles. In this scenario, you need to lose 6,000 feet. Using the formula, you multiply the altitude loss (6) by the distance for 1,000 feet (3). This calculation results in a total distance of 18 nautical miles. Since the closest standard distance to this value in the options provided is 20 nautical miles, it allows for a more gradual and safer descent path. Therefore, beginning the descent approximately 20 nautical miles out aligns well with the 3-degree glide slope technique, giving the pilot sufficient time to slow down, maintain control, and stabilize the aircraft's descent rate before reaching the new altitude. This approach enhances safety during the landing phase by ensuring that the aircraft descends at a steady and appropriate rate without exceeding the desired glide slope.

3. When flying a DME/GPS hold, what is the procedure during the outbound leg?

- A. Hold at a specified altitude
- B. Fly outbound leg to specified distance from fix/waypoint
- C. Maintain heading for 1 minute
- D. Circle back to the waypoint immediately

During the outbound leg of a DME/GPS hold, the procedure involves flying outbound to a specified distance from the fix or waypoint. This distance is typically defined in the approach or holding instructions. The key purpose of this procedure is to ensure that the aircraft maintains a standardized distance from the holding fix during the outbound leg, which can be crucial for spacing, traffic management, and maintaining a safe separation from obstacles or other air traffic. Flying outbound to a specified distance allows pilots to maintain situational awareness of their position relative to the fix and aids in proper timing when it comes to turning back towards the waypoint. This approach facilitates efficient holding pattern operations in Instrument Flight Rules, which is essential for managing flight in busy airspace. While holding at a specified altitude is important, it is a fundamental requirement throughout the entire hold rather than specific to the outbound leg. Maintaining a heading for a minute or circling back to the waypoint immediately does not align with standard holding procedures, as these do not allow for the proper outbound leg distance and timing necessary for a controlled holding pattern.

- 4. What is the requirement after failing to meet currency within the past 12 months?
 - A. Complete a flight review
 - B. File a new flight plan
 - C. Pass an instrument proficiency check by a CFII, examiner, or approved person
 - D. Reapply for the IFR rating

After failing to meet instrument currency requirements within the past 12 months, the regulation mandates that a pilot must pass an instrument proficiency check conducted by a Certified Flight Instructor-Instrument (CFII), an FAA examiner, or another approved person. This proficiency check ensures that the pilot has retained the necessary knowledge and skills to operate under Instrument Flight Rules (IFR) safely and effectively. The requirement emphasizes maintaining a high standard of safety within aviation, as recent experience and proficiency are crucial for handling the complexities of flying solely by reference to instruments, especially in challenging weather conditions or during operations in controlled airspace. Completing a flight review, although it is important for maintaining general flying skills, does not specifically address the requirement for instrument proficiency after a lapse in currency. Filing a new flight plan does not pertain to the currency issue and has a different purpose in flight operations. Reapplying for the IFR rating is not appropriate; the pilot still retains their rating but must meet the proficiency check standard. This clarity ensures that pilots can responsibly continue their IFR operations after a period of inactivity.

- 5. The High-Level Significant Weather Chart forecasts weather conditions primarily at what flight levels?
 - A. Below FL100
 - B. From FL250 to FL630
 - C. Between FL100 to FL250
 - D. Above FL630

The High-Level Significant Weather Chart is designed to provide information on significant weather phenomena at higher altitudes, specifically from Flight Level 250 to Flight Level 630. This range encompasses conditions that are relevant for aircraft operating at cruising altitudes. The chart includes information about turbulence, jet streams, and storm systems that can affect flight operations at these higher altitudes. Flight Level 250 represents 25,000 feet, which is the beginning of the altitudes typically used for high-density traffic and longer range flights. The upper limit of Flight Level 630, or 63,000 feet, includes the higher altitudes that are less commonly flown but still relevant for certain types of flights, especially those involving special missions or specific atmospheric phenomena. Thus, the forecasting scope of the High-Level Significant Weather Chart is essential for pilots operating in the flight levels associated with typical airliner routes and high-altitude flight operations.

- 6. Above what altitude is the maximum speed in a holding pattern allowed to be 265 KIAS?
 - A. 10,000 feet
 - B. 14,000 feet
 - C. 18,000 feet
 - D. 20,000 feet

The maximum speed of 265 KIAS in a holding pattern applies to altitudes above 14,000 feet. This is an important regulation in instrument flight rules that helps ensure safe and efficient aircraft operation during holding procedures. At and below 14,000 feet, the maximum holding speed is limited to 230 KIAS. This regulation is in place to minimize the risk of collisions and to enhance situational awareness among pilots in a holding pattern. Once an aircraft is above 14,000 feet, it can operate at a higher speed of 265 KIAS, allowing for more efficient handling of air traffic as altitude increases and the aircraft's performance capabilities improve. Understanding these altitude thresholds is crucial for pilots, as it directly affects their flight planning and operational decisions, particularly when entering and exiting holding patterns in busy airspace.

7. What is the timeframe within which you must notify ATC if your clearance is void?

- A. 15 minutes
- **B. 30 minutes**
- C. 60 minutes
- D. 90 minutes

The correct timeframe for notifying Air Traffic Control (ATC) if your clearance is void is indeed 30 minutes. According to FAA regulations, pilots are required to report to ATC when they have not departed within the timeframe specified, which is typically 30 minutes from the time the clearance was issued. This requirement ensures that ATC can effectively manage air traffic and maintain safety in the airspace. The emphasis on notifying ATC within this timeframe is crucial because it helps prevent misunderstandings and potential conflicts with other aircraft. If a pilot fails to notify ATC after 30 minutes, their clearance is considered void, meaning they are not authorized to take off per that initial clearance, and they may need to obtain a new one. Understanding this timeframe is vital for maintaining adherence to air traffic protocols and ensuring safe flight operations.

8. Where are IFR flight plans typically required?

- A. Class B airspace only
- **B.** Class A airspace
- C. All airspace regardless of flight rules
- D. Only at airport terminals

IFR flight plans are typically required in Class A airspace because this airspace is specifically designated for Instrument Flight Rules operations. Class A airspace extends from 18,000 feet MSL up to and including FL600 and is intended for aircraft operating under IFR. In this airspace, all pilots must operate under IFR to ensure that air traffic control can effectively manage the flight paths of numerous aircraft that can be operating simultaneously in the high-altitude environment. While IFR flight plans may also be filed in other classes of airspace, such as Class B or Class C, the requirement is specifically mandated for Class A. It accommodates the need for stringent separation and monitoring of numerous aircraft that can be flying at those high altitudes. Other types of airspace may allow for operations under VFR (Visual Flight Rules) and may not require an IFR flight plan unless specified otherwise. Therefore, the requirement for IFR flight plans is essential in maintaining safety and efficiency in the heavily trafficked Class A airspace.

- 9. Which document is necessary to ensure aircraft airworthiness?
 - A. Registration Certificate
 - **B.** Operating Handbook
 - C. Airworthiness Certificate
 - D. Weight and Balance calculations

The Airworthiness Certificate is essential for ensuring that an aircraft meets safety and operational standards set by aviation authorities. This certificate indicates that the aircraft has been inspected and complies with the applicable regulations, thereby confirming its fitness for flight. It serves as a primary assurance that the aircraft is in a condition for safe operation and meets all necessary airworthiness standards. While the Registration Certificate establishes ownership and is important for identification, it does not pertain directly to the safety and operational capability of the aircraft. The Operating Handbook provides essential operational guidelines and limitations for the aircraft but does not verify its airworthiness. Weight and Balance calculations are critical for safe flight operations, ensuring that the aircraft is loaded correctly, but they are part of the operational procedures rather than a direct indication of airworthiness. Thus, the Airworthiness Certificate holds primary importance in confirming that an aircraft is safe for operation.

- 10. Which advisory service is explicitly available only in Alaska?
 - A. DATALINK Weather
 - **B.** En Route Flight Advisory Service
 - C. Automatic Terminal Information System
 - **D.** Transcribed Weather Broadcast

The Transcribed Weather Broadcast is specifically designed for Alaska and is a unique service that provides weather information tailored to the needs of the Alaskan flying community. This service offers a valuable resource for pilots by delivering updated weather information through recorded messages, which can be accessed via radio. Given the distinct challenges posed by Alaskan weather and geography, this advisory service is critical for pilots flying in that region, ensuring they have access to pertinent and timely weather updates. In contrast, DATALINK Weather, En Route Flight Advisory Service, and Automatic Terminal Information System are services that are available in other parts of the United States as well. These services are more broadly applicable and not limited to the unique requirements found in Alaska. Thus, the Transcribed Weather Broadcast stands out as an advisory service that caters directly to the specific needs of pilots operating in Alaskan airspace.