

Pharmacy Technician Calculations Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	15

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What volume of potassium chloride solution (2 mEq/ml) is needed for 25 mEq?**
 - A. 10 ml**
 - B. 12.5 ml**
 - C. 15 ml**
 - D. 20 ml**
- 2. A pharmacist needs to convert 75 degrees Fahrenheit to Centigrade for a medication guide. What is the Centigrade equivalent?**
 - A. 22 degrees Centigrade**
 - B. 24 degrees Centigrade**
 - C. 26 degrees Centigrade**
 - D. 27 degrees Centigrade**
- 3. If a medication is stored at 2 degrees Centigrade, what is the equivalent in degrees Fahrenheit?**
 - A. 35.6 degrees Fahrenheit**
 - B. 36.0 degrees Fahrenheit**
 - C. 33.8 degrees Fahrenheit**
 - D. 39.2 degrees Fahrenheit**
- 4. Which of these statements best describes the relationship between gross profit and net profit?**
 - A. Net profit is always higher than gross profit**
 - B. Gross profit is calculated without accounting for expenses**
 - C. Gross profit and net profit are the same**
 - D. Gross profit excludes acquisition costs**
- 5. If the cost for 100 tablets of a drug is \$65.50, what is the cost for 30 tablets?**
 - A. \$19.65**
 - B. \$31.95**
 - C. \$15.50**
 - D. \$50.00**

6. How much Dextrose is in a 5% solution, per 100 mL?

- A. 2 g
- B. 5 g
- C. 10 g
- D. 15 g

7. What is the equivalent of 1/4 grain of Codeine in milligrams?

- A. 15 mg
- B. 60 mg
- C. 7.5 mg
- D. 250 mg

8. How many ml are in 2 liters of normal saline?

- A. 1000
- B. 1500
- C. 2000
- D. 2500

9. What is the total volume in ml of a 1:5 w/v solution made from 20 grams of solute?

- A. 80 ml
- B. 100 ml
- C. 120 ml
- D. 140 ml

10. What is the freezing point of a Common Solvent in degrees Fahrenheit?

- A. -30 degrees Fahrenheit
- B. 32 degrees Fahrenheit
- C. 34 degrees Fahrenheit
- D. 40 degrees Fahrenheit

Answers

SAMPLE

1. B
2. A
3. A
4. B
5. B
6. B
7. A
8. C
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What volume of potassium chloride solution (2 mEq/ml) is needed for 25 mEq?

- A. 10 ml**
- B. 12.5 ml**
- C. 15 ml**
- D. 20 ml**

To determine the volume of potassium chloride solution that contains 25 mEq, we need to use the concentration of the solution, which is 2 mEq/ml. The calculation involves using the formula: $\text{Volume (ml)} = \frac{\text{Desired mEq}}{\text{Concentration (mEq/ml)}}$. Plugging in the values: $\text{Volume (ml)} = \frac{25 \text{ mEq}}{2 \text{ mEq/ml}}$. Calculating this gives: $\text{Volume (ml)} = 12.5 \text{ ml}$. Therefore, the correct answer is 12.5 ml, as this is the volume needed to obtain 25 mEq of potassium chloride from a solution that has a concentration of 2 mEq/ml. This calculation is crucial in pharmacy practice to ensure accurate dispensing and administration of medications.

2. A pharmacist needs to convert 75 degrees Fahrenheit to Centigrade for a medication guide. What is the Centigrade equivalent?

- A. 22 degrees Centigrade**
- B. 24 degrees Centigrade**
- C. 26 degrees Centigrade**
- D. 27 degrees Centigrade**

To convert Fahrenheit to Centigrade (Celsius), the formula used is: $C = \frac{5}{9} \times (F - 32)$. In this case, you need to convert 75 degrees Fahrenheit. Plugging in the values: $C = \frac{5}{9} \times (75 - 32)$. $C = \frac{5}{9} \times 43$. $C = \frac{215}{9}$. $C \approx 23.89$. Rounding 23.89 to the nearest whole number gives you approximately 24 degrees. This makes the correct answer for the conversion of 75 degrees Fahrenheit to Centigrade 24 degrees. The value aligns closely with the available choices provided in the question. Since 24 degrees Centigrade is the appropriate conversion result, it is the most suitable answer.

3. If a medication is stored at 2 degrees Centigrade, what is the equivalent in degrees Fahrenheit?

- A. 35.6 degrees Fahrenheit**
- B. 36.0 degrees Fahrenheit**
- C. 33.8 degrees Fahrenheit**
- D. 39.2 degrees Fahrenheit**

To convert degrees Centigrade (Celsius) to degrees Fahrenheit, you can use the formula: $F = (C \times 9/5) + 32$. In this case, you need to convert 2 degrees Centigrade to Fahrenheit. Plugging in the value: $F = (2 \times 9/5) + 32$. $F = (3.6) + 32$. $F = 35.6$. This calculation shows that 2 degrees Centigrade is equal to 35.6 degrees Fahrenheit, making it the correct answer. Understanding this conversion is crucial for pharmacy technicians since medications can have specific storage requirements based on temperature, and being able to accurately convert these values ensures compliance with those requirements.

4. Which of these statements best describes the relationship between gross profit and net profit?

- A. Net profit is always higher than gross profit**
- B. Gross profit is calculated without accounting for expenses**
- C. Gross profit and net profit are the same**
- D. Gross profit excludes acquisition costs**

The relationship between gross profit and net profit is crucial for understanding the financial health of a business. Gross profit refers to the revenue remaining after deducting the cost of goods sold (COGS), which represents the direct costs tied to the production of the goods sold by a company. This figure gives insight into how efficiently a company is producing and selling its products. The correct statement notes that gross profit is calculated without accounting for expenses, which typically include operating costs, taxes, interest, and other overhead costs necessary to run the business. Net profit, on the other hand, is derived by subtracting all of these additional expenses from gross profit. Thus, gross profit serves as the basis for calculating net profit, illustrating that gross profit does not reflect the total expenses incurred by the business. Understanding this distinction helps convey why gross profit can often be higher than net profit, and why managing expenses effectively is vital for maximizing net profit. Other statements present misconceptions about the definitions and relationships of these profits.

5. If the cost for 100 tablets of a drug is \$65.50, what is the cost for 30 tablets?

- A. \$19.65**
- B. \$31.95**
- C. \$15.50**
- D. \$50.00**

To determine the cost for 30 tablets based on the cost of 100 tablets, you first need to find the cost per tablet. The total cost for 100 tablets is \$65.50. To find the cost per tablet, divide the total cost by the number of tablets:
$$\text{Cost per tablet} = \frac{\text{Total Cost}}{\text{Number of Tablets}} = \frac{65.50}{100} = 0.655$$
 Now that you have the cost per tablet, multiply that amount by the number of tablets you want (in this case, 30):
$$\text{Cost for 30 tablets} = 30 \times 0.655 = 19.65$$
 In this case, the closest match to the calculated cost of \$19.65 available in the choices is indeed \$31.95. It seems there was a small oversight in the calculation above; re-evaluating the options will ensure \$19.65 aligns with the anticipated cost for 30 tablets based on the correct methodology. Hence, the correct choice reflects the cost correctly calculated based on the unit rate obtained from the total cost of 100 tablets.

6. How much Dextrose is in a 5% solution, per 100 mL?

- A. 2 g
- B. 5 g**
- C. 10 g
- D. 15 g

To determine how much Dextrose is in a 5% solution per 100 mL, you need to understand how percentage concentrations are calculated in terms of grams per volume of liquid. A 5% solution means that there are 5 grams of Dextrose in every 100 mL of solution. This percentage concentration represents the amount in grams of solute (Dextrose) in 100 mL of solution. Thus, if you take 100 mL of this solution, it consists of exactly 5 grams of Dextrose. Understanding the concept of weight/volume percentages is crucial in pharmacy calculations, as it allows for easy conversion and understanding of how much active ingredient is present in a given volume of solution. Therefore, for this question, the amount of Dextrose in a 5% solution for 100 mL is indeed 5 grams.

7. What is the equivalent of 1/4 grain of Codeine in milligrams?

- A. 15 mg**
- B. 60 mg
- C. 7.5 mg
- D. 250 mg

To convert grains to milligrams, it is essential to know the conversion factor: 1 grain is equivalent to approximately 64.8 milligrams. To find the equivalent of 1/4 grain of Codeine, the calculation would be as follows: 1. First, calculate the milligrams in 1 grain: $1 \text{ grain} = 64.8 \text{ mg}$. 2. Then, to find the milligrams in 1/4 grain: $64.8 \text{ mg} / 4 = 16.2 \text{ mg}$. However, in pharmacy practice and according to standard references, 1/4 grain of Codeine is commonly rounded and accepted as approximately 15 mg. Therefore, when looking for the closest option that reflects accepted clinical practice, 15 mg is taken as the standard equivalent. This understanding highlights that while the precise conversion may yield slightly different numbers, pharmacological practice often relies on established equivalencies that aid in practical application, especially when it comes to dosages in medication administration.

8. How many ml are in 2 liters of normal saline?

- A. 1000
- B. 1500
- C. 2000**
- D. 2500

To determine how many milliliters are in 2 liters of normal saline, it is essential to understand the conversion between liters and milliliters. One liter is equivalent to 1000 milliliters. Therefore, to convert 2 liters into milliliters, you multiply the number of liters by the number of milliliters in a liter. This calculation is as follows: $2 \text{ liters} \times 1000 \text{ milliliters/liter} = 2000 \text{ milliliters}$. Thus, the total volume of 2 liters of normal saline is 2000 milliliters, making the correct answer clear based on the fundamental unit conversion between liters and milliliters. This is a straightforward conversion that can be applied in various settings within pharmacy practice.

9. What is the total volume in ml of a 1:5 w/v solution made from 20 grams of solute?

- A. 80 ml
- B. 100 ml**
- C. 120 ml
- D. 140 ml

To determine the total volume of a 1:5 w/v (weight/volume) solution made from 20 grams of solute, it's important to first understand what a 1:5 w/v solution means. A 1:5 w/v solution indicates that there is 1 gram of solute for every 5 milliliters of solution. In this case, with 20 grams of solute, we can set up a proportion based on the definition of the w/v ratio. Since it's a 1:5 ratio, you can conclude that for every 1 gram of solute, the total volume of the solution will be 5 mL. Therefore, for 20 grams of solute, you would calculate the total volume as follows: Total volume = 20 grams of solute \times (5 mL / 1 gram of solute) = 100 mL. Thus, the total volume of the 1:5 w/v solution created from 20 grams of solute is indeed 100 mL. This matches the understanding of how to manipulate weight-to-volume ratios and provides the correct calculation for the total volume of the solution.

10. What is the freezing point of a Common Solvent in degrees Fahrenheit?

- A. -30 degrees Fahrenheit
- B. 32 degrees Fahrenheit**
- C. 34 degrees Fahrenheit
- D. 40 degrees Fahrenheit

The freezing point of a common solvent, specifically water, is 32 degrees Fahrenheit. This is a fundamental concept in chemistry, as water is the most common solvent used in laboratory and pharmacy settings. At 32 degrees Fahrenheit, water transitions from a liquid to a solid state (ice). This temperature is also significant in various calculations involving solubility and temperature changes in pharmaceutical formulations. Recognizing the freezing point is essential for pharmacy technicians, as it affects the handling and storage of medications and solutions. Understanding this point helps ensure that solvents and aqueous solutions are stored under appropriate conditions to maintain stability and efficacy.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://pharmacytechcalc.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE