

# Perinatal Pediatrics and Diagnostic Skills Practice Test (Sample)

## Study Guide



**Everything you need from our exam experts!**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>5</b>  |
| <b>Answers</b> .....               | <b>8</b>  |
| <b>Explanations</b> .....          | <b>10</b> |
| <b>Next Steps</b> .....            | <b>16</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!**

## **Questions**

SAMPLE

- 1. Which stage requires that the areola and papilla project above the breast?**
  - A. Stage 1**
  - B. Stage 3**
  - C. Stage 4**
  - D. Stage 5**
- 2. What finding is typically associated with meconium-stained amniotic fluid?**
  - A. Decreased risks of respiratory complications**
  - B. Increased potential for neonatal infections**
  - C. Likelihood of congenital anomalies**
  - D. Associated respiratory distress in newborns**
- 3. What hormone does DHEA-S convert into in the placenta?**
  - A. Progesterone**
  - B. Estradiol**
  - C. Estrogen**
  - D. Testosterone**
- 4. How is the female midparental height calculated?**
  - A. Father's height + Mother's height**
  - B. Father's height - 13cm averaged with Mother's height**
  - C. Mother's height - 13cm averaged with Father's height**
  - D. Mother's height + 13cm averaged with Father's height**
- 5. Which condition is described by the failure of pulmonary vascular resistance (PVR) to decrease?**
  - A. Respiratory Distress Syndrome**
  - B. Persistent Pulmonary Hypertension of the Newborn**
  - C. Meconium aspiration syndrome**
  - D. Congenital Diaphragmatic Hernia**

**6. What is the recommended action for pulse oximetry reading between 90-94%?**

- A. Discharge immediately**
- B. Repeat in one hour, up to three times**
- C. Conduct an echocardiogram immediately**
- D. Start supplemental oxygen**

**7. What indicates that an infant is small for gestational age?**

- A. Less than 5th percentile**
- B. Less than 10th percentile**
- C. Less than 15th percentile**
- D. Less than 20th percentile**

**8. What indicates the need for exchange transfusion in infants with jaundice?**

- A. Levels with 2 mg of exchange transfusion threshold**
- B. Continued phototherapy**
- C. Presence of fever**
- D. High bilirubin levels without symptoms**

**9. What is the most common cause of anemia in infants?**

- A. Iron deficiency**
- B. Physiologic anemia of infancy**
- C. Hemolytic disease of the newborn**
- D. Vitamin B12 deficiency**

**10. Which of the following best describes neonatal hyperbilirubinemia?**

- A. It is a rare condition in newborns**
- B. It is usually benign and a normal increase in serum bilirubin**
- C. It always requires immediate intervention**
- D. It only occurs in premature infants**

## **Answers**

SAMPLE

1. C
2. D
3. C
4. B
5. B
6. B
7. B
8. A
9. B
10. B

SAMPLE

## **Explanations**

SAMPLE

**1. Which stage requires that the areola and papilla project above the breast?**

- A. Stage 1**
- B. Stage 3**
- C. Stage 4**
- D. Stage 5**

The correct stage where the areola and papilla project above the breast is characterized by significant development and elongation of both structures, indicating a certain level of maturity in breast development. In this stage, the areola expands and can become more prominent, while the nipple itself may protrude. This typically reflects hormonal influences that are critical during puberty, leading to the physical changes necessary for potential lactation in females. Earlier stages do not exhibit the same prominence of the areola and papilla. In the initial stages, such as Stage 1, there is minimal breast development, focusing primarily on prepubescent characteristics, while the subsequent stages have varying degrees of development that do not show the full projection as seen in Stage 4. Stage 5 marks the final phase, where the breast reaches full maturity. This progression is indicative of a typical developmental trajectory, emphasizing how breast structure evolves in response to hormonal changes and prepares for potential breastfeeding. Understanding these stages is essential in pediatric care and aligns with the recognition of normal developmental milestones.

**2. What finding is typically associated with meconium-stained amniotic fluid?**

- A. Decreased risks of respiratory complications**
- B. Increased potential for neonatal infections**
- C. Likelihood of congenital anomalies**
- D. Associated respiratory distress in newborns**

The presence of meconium-stained amniotic fluid is often considered an indicator of fetal stress and can lead to several immediate complications for the newborn, particularly respiratory issues. When meconium is released into the amniotic fluid, there is a risk that the infant may inhale meconium during the process of delivery, leading to a condition known as meconium aspiration syndrome (MAS). This syndrome can result in respiratory distress in newborns, as meconium can obstruct airways and cause inflammation in the lungs. The aspiration of meconium can interfere with normal breathing, leading to symptoms such as decreased oxygen levels, increased work of breathing, and potential need for respiratory support after birth. Therefore, the association between meconium-stained amniotic fluid and respiratory distress in newborns is well established in neonatal care and reflects the potential complications that can arise from this condition. In contrast, meconium-stained fluid is not typically associated with a decreased risk of respiratory complications, and while there can be increased risks of infection or congenital anomalies in some contexts, these are not the primary concerns directly linked to meconium-stained fluid on its own. The primary and most immediate concern remains the risk of respiratory distress,

### 3. What hormone does DHEA-S convert into in the placenta?

- A. Progesterone
- B. Estradiol
- C. Estrogen**
- D. Testosterone

DHEA-S, or dehydroepiandrosterone sulfate, is an important steroid hormone produced primarily by the adrenal glands. Within the placenta, DHEA-S undergoes conversion to estrogen. Specifically, it is a precursor for estradiol and estrone, which are significant forms of estrogen in pregnancy. The placenta has the enzymatic capability to convert DHEA-S into estrogens, which play crucial roles in maintaining pregnancy, promoting uterine growth, and preparing the body for labor. Estrogen, as produced from DHEA-S, is vital in regulating various metabolic processes during pregnancy and ensuring appropriate fetal development. This conversion is part of a complex hormonal network that supports pregnancy and fetal growth, highlighting the essential role of DHEA-S in producing the necessary estrogen levels. Understanding these hormonal pathways is key in perinatal pediatrics, as they impact maternal and fetal health significantly.

### 4. How is the female midparental height calculated?

- A. Father's height + Mother's height
- B. Father's height - 13cm averaged with Mother's height**
- C. Mother's height - 13cm averaged with Father's height
- D. Mother's height + 13cm averaged with Father's height

The midparental height for a female is calculated by taking the average of the father's height and the mother's height, adjusting the father's height by subtracting 13 cm. This adjustment accounts for the average height difference between males and females, providing a more accurate estimation of a daughter's potential adult height. The formula used is:  $(\text{Father's height} - 13 \text{ cm} + \text{Mother's height}) / 2$ . This results in a figure that reflects both parental heights while considering the typical gender differences in height. By subtracting 13 cm from the father's height, the calculation aims to balance the averages related to expected differences between male and female height in the population, thereby yielding a more precise prediction for the child's height.

**5. Which condition is described by the failure of pulmonary vascular resistance (PVR) to decrease?**

- A. Respiratory Distress Syndrome**
- B. Persistent Pulmonary Hypertension of the Newborn**
- C. Meconium aspiration syndrome**
- D. Congenital Diaphragmatic Hernia**

The condition characterized by the failure of pulmonary vascular resistance (PVR) to decrease is Persistent Pulmonary Hypertension of the Newborn. In this condition, there is an inability to transition from fetal to postnatal circulation, leading to elevated PVR that does not drop as expected after birth. Normally, PVR is high in utero due to the non-functioning lungs, but it should decrease rapidly upon birth as the lungs expand and begin to function. In cases of Persistent Pulmonary Hypertension, this normal decrease in PVR does not occur, causing significant shunting of blood away from the lungs, leading to inadequate oxygenation and respiratory distress. The elevated PVR can be caused by several factors, including structural heart issues or lung conditions that prevent the normal transition. This contrast is particularly significant when compared to other conditions listed. For instance, Respiratory Distress Syndrome typically involves reduced lung function but does not primarily revolve around PVR issues. Meconium aspiration syndrome can also complicate breathing but again does not specifically relate to the persistence of elevated PVR. Congenital Diaphragmatic Hernia can affect lung development and result in hypoxia but does not directly define the failure of PVR reduction after birth. Thus,

**6. What is the recommended action for pulse oximetry reading between 90-94%?**

- A. Discharge immediately**
- B. Repeat in one hour, up to three times**
- C. Conduct an echocardiogram immediately**
- D. Start supplemental oxygen**

A pulse oximetry reading between 90-94% indicates that there is a potentially low but not critically low oxygen saturation level. In this range, it's important to monitor the patient's condition closely rather than taking immediate, aggressive actions. Repeating the measurement in one hour, up to three times, allows for a reliable assessment of whether the low reading is a transient issue or indicative of a more serious underlying condition. This approach helps in making an informed decision based on trends over time rather than reacting to a single measurement. Immediate discharge, conducting an echocardiogram, or starting supplemental oxygen may not be warranted without a clearer understanding of the patient's condition. Monitoring provides an opportunity to observe any changes in oxygen saturation levels before determining if further intervention is necessary. If the readings remain low or worsen, then another step may be justified based on follow-up findings.

## 7. What indicates that an infant is small for gestational age?

- A. Less than 5th percentile
- B. Less than 10th percentile**
- C. Less than 15th percentile
- D. Less than 20th percentile

The classification of an infant as small for gestational age (SGA) is typically based on their growth parameters compared to a standard population. The most widely accepted cutoff for defining SGA is an infant whose birth weight is below the 10th percentile for their gestational age. This indicates that the infant is smaller than 90% of infants at the same gestational age, suggesting growth that is less than optimal. Being below the 5th percentile would indicate a more extreme level of growth restriction, but the threshold for SGA is specifically set at the 10th percentile to capture a broader range of infants who may face potential health challenges. The percentages below 10 and 20 are less commonly recognized thresholds for defining SGA, as they do not align with the standard medical definitions used in perinatal care. Thus, choosing less than 10th percentile as the indicator aligns with established guidelines and clinical practice.

## 8. What indicates the need for exchange transfusion in infants with jaundice?

- A. Levels with 2 mg of exchange transfusion threshold**
- B. Continued phototherapy
- C. Presence of fever
- D. High bilirubin levels without symptoms

The indication for exchange transfusion in infants with jaundice primarily relates to the bilirubin levels in the infant's bloodstream. Specifically, an exchange transfusion is typically warranted when bilirubin levels reach a certain critical threshold that may pose a risk for bilirubin encephalopathy, also known as kernicterus. In this context, the choice highlighting a threshold of 2 mg indicates a specific level at which exchange transfusion becomes necessary to prevent further complications. This threshold is usually measured in conjunction with the infant's postnatal age and clinical findings. When bilirubin levels exceed this threshold, even if the infant appears asymptomatic, there's a significant risk for potential damage to the brain and other organs, making intervention essential. The other choices, such as the need for continued phototherapy or the presence of fever, while important for managing jaundice and potentially indicating underlying issues, do not serve as direct indicators for the need for exchange transfusion. Phototherapy is a treatment aimed at reducing bilirubin levels rather than indicating an immediate need for exchange transfusion. Similarly, the presence of fever may suggest infection and warrants further assessment but does not directly correlate with bilirubin levels necessitating exchange transfusion. High bilirubin levels without symptoms can be concerning, but unless

## 9. What is the most common cause of anemia in infants?

- A. Iron deficiency
- B. Physiologic anemia of infancy**
- C. Hemolytic disease of the newborn
- D. Vitamin B12 deficiency

The most common cause of anemia in infants is physiologic anemia of infancy. This condition typically occurs within the first few months of life as a result of the natural decline in fetal hemoglobin levels after birth. During this period, infants may exhibit lower hemoglobin concentrations since they are transitioning from the high fetal hemoglobin levels present during gestation to adult hemoglobin levels. Physiologic anemia of infancy is a normal part of development as the body adjusts to the extrauterine environment and begins to produce red blood cells at a more adult-like rate. This anemia is generally self-limiting and resolves as the infant matures, particularly around the 2-3 month mark when erythropoiesis (the production of red blood cells) begins to stabilize and increase. In contrast, while iron deficiency is a well-known cause of anemia in older children and adults, it is less common in the immediate neonatal period because infants are typically born with adequate iron stores to last them for the first several months. Hemolytic disease of the newborn and vitamin B12 deficiency also contribute to anemia, but they are not as prevalent as physiologic anemia, especially in the early stages of life. Thus, physiologic anemia of infancy is considered the most common cause.

## 10. Which of the following best describes neonatal hyperbilirubinemia?

- A. It is a rare condition in newborns
- B. It is usually benign and a normal increase in serum bilirubin**
- C. It always requires immediate intervention
- D. It only occurs in premature infants

Neonatal hyperbilirubinemia refers to the condition where there is an elevated level of bilirubin in a newborn's blood. The correct choice highlights that this condition is usually benign and represents a normal physiological response in many newborns. During the first few days after birth, it is normal for many newborns to experience an increase in serum bilirubin levels due to the immature hepatic function and the breakdown of fetal hemoglobin. This can lead to physiological jaundice, which is typically self-limited and resolves without the need for aggressive treatment. In healthy term infants, bilirubin levels often peak around the third to fifth day of life and then gradually decline. While there are instances when hyperbilirubinemia can indicate more serious underlying conditions (such as hemolytic disease), in the majority of cases, it is a common and benign condition, necessitating monitoring rather than immediate intervention. This accentuates the importance of understanding the typical course of bilirubin levels in newborns and distinguishing it from pathological jaundice, which can warrant immediate medical attention. The other options do not fully capture the typical nature and behavior of neonatal hyperbilirubinemia in the majority of newborns, leading to misinterpretations of its clinical significance.

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://perinatalpediadiagnostic.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**