Pennsylvania DOH Basic Vehicle Rescue Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Which component is crucial to expose before making cuts during a rescue?
 - A. The exterior shell of the vehicle
 - B. The fuel tank
 - C. The interior post and roof
 - D. The ground clearance
- 2. What should be monitored closely during the vehicle cutting process?
 - A. Surrounding traffic conditions
 - **B.** Victim heart rates
 - C. Sparks and potential for fire
 - D. Rescuer fatigue
- 3. How large of an area is needed for a medevac operation?
 - A. 50x50 ft
 - B. 75x75 ft
 - C. 100x100 ft
 - D. 150x150 ft
- 4. What is the purpose of crabbing when stabilizing a vehicle on its roof?
 - A. To lift the vehicle higher
 - B. To create additional space within the vehicle
 - C. To stabilize against unexpected movement
 - D. To remove the vehicle from obstacles
- 5. What type of access involves rescuers creating new openings in the structure of a vehicle?
 - A. Primary access
 - **B. Secondary access**
 - C. Rescue access
 - D. Evacuation access

- 6. Which of these items is often included in the Supplemental Restraint Systems in a vehicle?
 - A. Steering wheel
 - **B.** Brakes
 - C. Oil system
 - D. Fuel tank
- 7. What does the term 'glass management' refer to in vehicle rescue?
 - A. Safely removing broken glass to protect victims
 - B. Replacing shattered glass with safety glass
 - C. Increasing visibility by cleaning windows
 - D. Protecting rescuers from UV light through glass barriers
- 8. Why is it essential to communicate with the victims during a rescue?
 - A. To keep them calm and informed about the rescue process
 - B. To assess their physical condition
 - C. To distract them from the pain
 - D. To expedite the rescue process
- 9. What is the typical working psi for airbags used in rescue operations?
 - A. 100 to 105 psi
 - B. 110 to 115 psi
 - C. 114 to 118 psi
 - D. 120 to 125 psi
- 10. What should be done with hazardous materials found at the scene?
 - A. Ignore them if they are not immediately visible
 - B. Follow local protocols and call hazardous materials teams if necessary
 - C. Try to clean them up by yourself
 - D. Mark the area and allow others to handle it

Answers

- 1. C 2. C 3. C 4. C 5. B 6. A 7. A 8. A 9. C 10. B

Explanations

1. Which component is crucial to expose before making cuts during a rescue?

- A. The exterior shell of the vehicle
- B. The fuel tank
- C. The interior post and roof
- D. The ground clearance

In the context of vehicle rescue, exposing the interior post and roof is crucial before making any cuts. This component provides essential structural support for the vehicle and is often where the greatest structural integrity is located. By assessing and potentially exposing these areas, rescuers can determine the safest and most effective way to make cuts, which reduces the risk of the vehicle collapsing or causing further injury to trapped occupants. Understanding the vehicle's interior structure allows rescuers to avoid cutting into critical components that could lead to hazardous situations, including the deployment of airbags or compromising the vehicle's stability. Prioritizing this step ensures that the rescue can proceed efficiently and safely, minimizing risk to both the rescuers and the victims. While the exterior shell, fuel tank, and ground clearance play roles in the rescue process, the interior post and roof's structural significance makes it the key focus before initiating cutting operations.

2. What should be monitored closely during the vehicle cutting process?

- A. Surrounding traffic conditions
- **B.** Victim heart rates
- C. Sparks and potential for fire
- D. Rescuer fatigue

During the vehicle cutting process, it is crucial to closely monitor for sparks and the potential for fire. This is because the tools used for cutting through metal can produce significant heat and sparks, which can ignite flammable materials present in the vehicle, such as gasoline, oil, or upholstery. Recognizing the risk of fire early allows responders to take preventive measures, such as implementing fire suppression techniques or using protective barriers, ensuring the safety of both the victims trapped inside and the rescuers. While monitoring surrounding traffic conditions is important for the overall scene safety, the immediate concern during the cutting process focuses primarily on fire hazards. The heart rates of victims provide valuable information but are more relevant during patient assessment and treatment rather than the cutting process itself. Rescuer fatigue is a consideration in rescue operations, but it is not the foremost concern during the active phase of cutting which poses immediate and serious risks related to fire and ignition sources.

3. How large of an area is needed for a medevac operation?

- A. 50x50 ft
- B. 75x75 ft
- C. 100x100 ft
- D. 150x150 ft

For a medevac operation, a designated landing zone is crucial to ensure safety and efficiency when transporting patients. The appropriate size for such an area is typically around 100 feet by 100 feet. This size allows enough room for the helicopter to safely land and take off, while also providing adequate space for ground personnel and equipment needed for patient care and transport. Factors that contribute to the requirement for a larger area include the helicopter's rotor system and the need for safety buffers to keep personnel at a safe distance from the aircraft. Additionally, the 100x100 feet area takes into account potential obstacles, such as trees, power lines, and buildings, which could pose risks during landing or takeoff. The other area sizes would either be too small to accommodate the safe operation of the helicopter or may not provide sufficient room for the necessary equipment and personnel to do their jobs effectively and safely. Therefore, 100x100 feet is the standard and ideal measurement for a medevac operation's landing zone.

4. What is the purpose of crabbing when stabilizing a vehicle on its roof?

- A. To lift the vehicle higher
- B. To create additional space within the vehicle
- C. To stabilize against unexpected movement
- D. To remove the vehicle from obstacles

Crabbing is a technique used in vehicle stabilization that involves creating a solid and secure base for the vehicle, particularly when it is positioned on its roof. The primary purpose of crabbing is to stabilize the vehicle against any unexpected or uncontrolled movements that may occur during rescue operations. This is critical because a vehicle on its roof can be inherently unstable and may shift or roll further if not properly secured. By using crabbing techniques, responders can ensure that the vehicle remains stationary, providing a safer environment for both the trapped individuals and the rescuers working to extricate them. This enhances overall safety, as it mitigates risks associated with sudden shifts in the vehicle's position, allowing for a more controlled and efficient rescue process. The other options do not accurately capture the primary focus of crabbing. For instance, while lifting a vehicle higher or creating space within it could be a consideration in some scenarios, those actions do not specifically relate to the stabilization aspect inherent in crabbing. Similarly, while removing a vehicle from obstacles is a task that may arise, it is not the main function of crabbing during roof stabilization.

- 5. What type of access involves rescuers creating new openings in the structure of a vehicle?
 - A. Primary access
 - **B. Secondary access**
 - C. Rescue access
 - D. Evacuation access

The correct choice is focused on the terminology used in vehicle rescue scenarios. Secondary access refers to the methods employed when the primary access points (such as doors or windows) are either blocked or inaccessible, necessitating the creation of new openings in the vehicle's structure. This could involve cutting or prying open parts of the vehicle to reach victims safely. In contrast, primary access typically involves utilizing existing openings, like doors and windows, to gain entry into the vehicle. Rescue access might suggest techniques that assist in the extrication of a patient but does not specifically denote the creation of new openings. Evacuation access would refer to the means or pathways arranged for the safe removal of individuals from the vehicle once they are reached, not the initial entry process. Thus, secondary access is the term that correctly captures the need for rescuers to create new openings in order to achieve access.

- 6. Which of these items is often included in the Supplemental Restraint Systems in a vehicle?
 - A. Steering wheel
 - **B.** Brakes
 - C. Oil system
 - D. Fuel tank

The steering wheel is often included in the Supplemental Restraint Systems (SRS) of a vehicle because it is commonly equipped with an airbag. The SRS is designed to enhance the protection of occupants during a crash. In many modern vehicles, the steering wheel contains an airbag that deploys in the event of a collision to help cushion the impact for the driver. This system works in conjunction with seat belts to provide additional safety measures. The other options listed do not relate to the SRS. Brakes are a critical system for vehicle operation but do not provide supplemental restraint during a collision. The oil system and fuel tank also serve essential functions in vehicle operation but are not designed to protect occupants in an accident. Hence, the steering wheel stands out as a vital component of the SRS by including the airbag mechanism.

- 7. What does the term 'glass management' refer to in vehicle rescue?
 - A. Safely removing broken glass to protect victims
 - B. Replacing shattered glass with safety glass
 - C. Increasing visibility by cleaning windows
 - D. Protecting rescuers from UV light through glass barriers

The term 'glass management' in vehicle rescue refers specifically to the safe removal of broken glass to protect victims involved in an accident. During a rescue operation, broken glass can pose a significant hazard to both the victims and the rescuers. Proper glass management ensures that all shards or fragments of glass are carefully handled and removed, minimizing the risk of injury from cuts or punctures. This practice is crucial in emergency situations where establishing a safe environment for both the victims and the rescuers is paramount. While replacing glass or cleaning windows could be considered restorative actions, those actions do not align with the immediate priorities or safety concerns involved in a rescue scenario. Additionally, protecting from UV light is irrelevant in the context of vehicle rescue, which focuses on the urgent need to assist and stabilize individuals at the scene of an accident.

- 8. Why is it essential to communicate with the victims during a rescue?
 - A. To keep them calm and informed about the rescue process
 - B. To assess their physical condition
 - C. To distract them from the pain
 - D. To expedite the rescue process

Communicating with victims during a rescue is crucial primarily because it helps keep them calm and informed about what is happening. When individuals find themselves in distressing situations, such as vehicle accidents, they can experience significant anxiety and fear. Providing clear, reassuring information about the rescue process can help alleviate some of that anxiety, fostering an environment where victims feel more secure. Additionally, maintaining open lines of communication allows rescuers to establish a rapport with victims, which is essential in high-stress situations. This connection can also make a victim more cooperative and willing to follow instructions, facilitating the rescue effort. When victims understand what responders are doing and why, they are more likely to comply with requests, which can enhance safety for both the victims and the rescuers. While assessing the victims' physical condition is important as it can guide the medical response, communication serves a broader purpose that encompasses emotional support. Distracting victims from pain may offer temporary relief, but it does not address the underlying need for information and reassurance. Expediting the rescue process is indeed important as well, but effective communication often plays a key role in ensuring safety and efficiency during the operation. Ultimately, keeping victims calm and informed is integral to a successful and empathetic rescue.

- 9. What is the typical working psi for airbags used in rescue operations?
 - A. 100 to 105 psi
 - B. 110 to 115 psi
 - C. 114 to 118 psi
 - D. 120 to 125 psi

The typical working pressure for airbags used in rescue operations falls within the range of 114 to 118 psi. This range is crucial because it indicates the operational limits for the lifting capacity of the airbags while ensuring safety and effectiveness during rescue scenarios. Proper understanding of the working psi of rescue airbags ensures that responders can effectively utilize this equipment without the risk of overinflation or failure, which could compromise safety for both the victims and the rescuers. Operating within the specified pressure limits allows for controlled lifting and stabilization of vehicles or heavy objects, which is often necessary in rescue situations. While other ranges may seem plausible, they do not align with the established norms for rescue airbags, which are designed to provide reliable and consistent performance within the specified psi range. Understanding this helps ensure that first responders can effectively employ these tools in critical situations.

- 10. What should be done with hazardous materials found at the scene?
 - A. Ignore them if they are not immediately visible
 - B. Follow local protocols and call hazardous materials teams if necessary
 - C. Try to clean them up by yourself
 - D. Mark the area and allow others to handle it

The appropriate action to take when hazardous materials are discovered at a scene is to follow local protocols and, if necessary, call hazardous materials teams. This choice is grounded in the importance of safety and proper handling of potentially dangerous substances. Hazardous materials can pose significant risks to responders, bystanders, and the environment. Each jurisdiction typically has established protocols for dealing with such incidents that include the identification, containment, and cleanup of hazardous materials. Engaging specialized teams ensures that trained professionals, equipped with the right tools and knowledge, manage the situation safely and effectively. This response minimizes risk and ensures compliance with safety regulations and standards. In contrast, overlooking hazardous materials—whether because they aren't immediately visible or for any reason-can lead to dangerous situations. Attempting to clean them up independently is often ill-advised, as untrained individuals may not recognize all potential risks or know how to handle specific materials safely. Additionally, while marking the area might help to some extent, it does not address the need for immediate and specialized response, which is critical in managing hazardous substances properly.