

Paramedic Entrance Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. What is the normal heart rate range for infants aged 6-12 months?**
 - A. 70-110 bpm**
 - B. 80-140 bpm**
 - C. 90-150 bpm**
 - D. 100-160 bpm**
- 2. Which action is NOT a function of the musculoskeletal system?**
 - A. Protect internal organs**
 - B. Provide ability to move**
 - C. Produce hormones**
 - D. Gives body shape**
- 3. Which body cavity is responsible for housing the lungs and heart?**
 - A. Abdomino-pelvic**
 - B. Cranial**
 - C. Thoracic**
 - D. Spinal**
- 4. What does systolic pressure represent?**
 - A. Pressure in the veins**
 - B. Pressure remaining in arteries**
 - C. Pressure created when the left ventricle contracts**
 - D. Average pressure throughout the cardiac cycle**
- 5. What is the role of a record keeper in an EMT's team?**
 - A. To provide direct patient care and assessment**
 - B. To ensure patient safety during transport**
 - C. To maintain accurate and complete patient care records**
 - D. To act as the liaison between the patient and medical staff**

6. What role do the lobes play in the structure of the lungs?

- A. To protect the lungs**
- B. To aid in gas exchange**
- C. To create divisions for better function**
- D. To connect to the heart**

7. What are the large branches that come from the trachea and enter the lungs called?

- A. Alveoli**
- B. Bronchi**
- C. Bronchioles**
- D. Lobes**

8. What is one of the primary functions of the cranial cavity?

- A. Protects the heart**
- B. Houses the brain**
- C. Contains the lungs**
- D. Encases the digestive organs**

9. What is the normal heart rate for preschool-aged children (ages 3-5 years)?

- A. 60-100 bpm**
- B. 70-110 bpm**
- C. 80-120 bpm**
- D. 90-130 bpm**

10. What does the acronym PENMAN stand for in scene size-up?

- A. Personal protective equipment needed**
- B. Patient examination method analysis**
- C. Potential hazards identification**
- D. Personal equipment and needs assessment**

Answers

SAMPLE

- 1. B**
- 2. C**
- 3. C**
- 4. C**
- 5. C**
- 6. C**
- 7. B**
- 8. B**
- 9. C**
- 10. A**

SAMPLE

Explanations

SAMPLE

1. What is the normal heart rate range for infants aged 6-12 months?

- A. 70-110 bpm**
- B. 80-140 bpm**
- C. 90-150 bpm**
- D. 100-160 bpm**

The normal heart rate range for infants aged 6-12 months typically falls between 80 and 140 beats per minute (bpm). This range reflects the higher metabolic demand and dynamic physiological changes occurring in infants, as their hearts beat faster than those of older children and adults. In this age group, heart rate is influenced by various factors, such as activity level, emotional state, and overall health. During periods of rest, infants may have a lower heart rate within this range, whereas during active play or distress, it can approach the upper limits. Understanding this normal range is crucial for medical professionals to assess the cardiovascular health of infants accurately. It enables them to identify potential anomalies and provides insight into the infant's status during assessments and emergencies.

2. Which action is NOT a function of the musculoskeletal system?

- A. Protect internal organs**
- B. Provide ability to move**
- C. Produce hormones**
- D. Gives body shape**

The musculoskeletal system comprises bones, muscles, tendons, ligaments, and cartilage, which work together to support the body, enable movement, and protect vital organs. While options A, B, and D accurately reflect the roles of this system—protection of internal organs, enabling mobility, and providing structural shape—option C refers to hormone production, which is primarily the function of the endocrine system. Hormones are produced by specific glands such as the pituitary, thyroid, adrenal, and pancreas, and they play vital roles in regulating various bodily functions, including metabolism and growth, but are not produced by components of the musculoskeletal system. Therefore, the action that is not a function of the musculoskeletal system is indeed the production of hormones.

3. Which body cavity is responsible for housing the lungs and heart?

- A. Abdomino-pelvic**
- B. Cranial**
- C. Thoracic**
- D. Spinal**

The thoracic cavity is the correct answer because it is specifically designed to house vital organs, including the lungs and heart. This cavity is situated between the neck and the diaphragm and is encased by the ribcage, which not only protects these organs but also aids in the mechanics of breathing. Within the thoracic cavity, the lungs occupy most of the space, allowing for the vital exchange of gases to take place. The heart, located in the mediastinum—a central compartment of the thoracic cavity—plays a crucial role in circulating blood throughout the body. Given its importance to respiratory and cardiovascular functions, the thoracic cavity is essential for sustaining life. The other options refer to different body cavities, which do not contain these organs. The abdomino-pelvic cavity houses organs related to digestion and reproduction, the cranial cavity contains the brain, and the spinal cavity encases the spinal cord. Thus, they do not provide the supportive environment for the lungs and heart that the thoracic cavity does.

4. What does systolic pressure represent?

- A. Pressure in the veins**
- B. Pressure remaining in arteries**
- C. Pressure created when the left ventricle contracts**
- D. Average pressure throughout the cardiac cycle**

Systolic pressure represents the pressure in the arteries during the contraction of the left ventricle of the heart. When the left ventricle contracts, it pumps blood out into the aorta and the systemic circulation. This contraction causes a surge in arterial pressure, reaching its highest level, which is recorded as the systolic pressure. This value is significant as it reflects the peak force of blood against the artery walls during the heart's pumping phase. Understanding systolic pressure is critical in assessing cardiovascular health; elevated levels can indicate potential heart issues, while low levels may suggest inadequate blood flow to organs. Other options are not correct as they do not accurately describe what systolic pressure measures: it is not about pressure in veins or leftover pressure in arteries; it specifically pertains to the moment of contraction of the left ventricle, and it also differs from the average pressure throughout the cardiac cycle, which is represented by diastolic pressure along with systolic pressure in blood pressure readings.

5. What is the role of a record keeper in an EMT's team?

- A. To provide direct patient care and assessment
- B. To ensure patient safety during transport
- C. To maintain accurate and complete patient care records**
- D. To act as the liaison between the patient and medical staff

The role of a record keeper in an EMT's team is crucial for maintaining a high standard of patient care. This individual is responsible for ensuring that all patient care records are accurate and complete. This entails documenting vital signs, treatment given, the patient's medical history, and any other relevant information during the call. These records are essential not only for ongoing patient care but also for legal purposes and quality assurance. Accurate documentation aids in continuity of care once the patient is handed over to hospital staff and is vital for the medical team's assessment and decision-making. A record keeper ensures that any information relayed about the patient's condition and treatment history is precise and reliable, contributing significantly to overall patient safety and care outcomes in emergency medical situations. In contrast, options that focus on providing direct patient care, ensuring transport safety, or acting as a liaison, while all important roles in the EMT team, do not specifically address the distinct responsibilities associated with record keeping. Each of those functions intersects with patient care, but they diverge from the critical task of managing and preserving accurate medical documentation, which is fundamental to successful emergency medical services.

6. What role do the lobes play in the structure of the lungs?

- A. To protect the lungs
- B. To aid in gas exchange
- C. To create divisions for better function**
- D. To connect to the heart

The lobes of the lungs play a critical role in creating divisions that enhance their function. Each lung is divided into lobes, with the right lung typically having three lobes and the left lung having two. This lobular structure allows for a more efficient organization of lung tissue and accommodates the functional anatomy of the thoracic cavity. The division into lobes creates distinct segments that can operate independently, which is important for effective ventilation and gas exchange. Additionally, this compartmentalization helps to localize infections or diseases, allowing for targeted treatment and minimizing the impact on the entire lung. This structural arrangement also contributes to the lungs' ability to expand and contract more effectively during the breathing process, facilitating optimal airflow and gas exchange. Options related to protection, gas exchange, or connection to the heart, while important aspects of lung function and anatomy, do not directly address the specific role of lobes in structuring the lungs for improved respiratory capabilities.

7. What are the large branches that come from the trachea and enter the lungs called?

- A. Alveoli**
- B. Bronchi**
- C. Bronchioles**
- D. Lobes**

The large branches that stem from the trachea and lead into the lungs are known as bronchi. These structures serve as the major airways that direct air into each lung, with the trachea bifurcating into the right and left main bronchi. Once inside the lungs, the bronchi continue to divide into smaller bronchi and, ultimately, into bronchioles, which are smaller tubes that facilitate the delivery of air to the alveoli, where gas exchange occurs. Understanding the role of the bronchi is essential for recognizing how air travels through the respiratory system. They are larger in diameter compared to bronchioles, which are significantly smaller and more numerous, leading to the alveoli at the end of the respiratory tree. The term "lobes" refers to the sections of the lungs themselves rather than the branching airways. Each lung is divided into lobes (the right lung has three, while the left lung has two), which are composed of lung tissue that houses the alveoli for gas exchange.

8. What is one of the primary functions of the cranial cavity?

- A. Protects the heart**
- B. Houses the brain**
- C. Contains the lungs**
- D. Encases the digestive organs**

The primary function of the cranial cavity is to house the brain. This anatomical structure is designed specifically to provide a protective space for the brain, which is a vital organ central to the function of the nervous system. The cranial cavity is surrounded by the skull, which consists of various bones that protect the brain from physical injury. This protective function is essential for maintaining the integrity and functionality of the brain, which controls various bodily functions, processes sensory information, and coordinates movements. While the other options correspond to important body parts, they are not located within the cranial cavity. The heart is protected by the thoracic cavity, the lungs are also contained within the thoracic cavity, and the digestive organs are found in the abdominal cavity. Thus, the unique role of the cranial cavity is distinctly linked to safeguarding the brain, establishing it as the correct response.

9. What is the normal heart rate for preschool-aged children (ages 3-5 years)?

- A. 60-100 bpm**
- B. 70-110 bpm**
- C. 80-120 bpm**
- D. 90-130 bpm**

The normal heart rate for preschool-aged children, typically between the ages of 3 to 5 years, falls within a range of approximately 80 to 120 beats per minute (bpm). This range is appropriate because children in this age group have higher metabolic demands and generally higher heart rates compared to older children and adults. In understanding this heart rate range, it's important to consider the physiological differences between children and adults. As children grow, their heart rates gradually decrease; newborns and infants have much higher baseline heart rates. At the preschool age, their hearts are still responding to higher activity levels and growth demands, which is why the average ranges are higher than those for older children or adults. Heart rates outside this range may indicate either a state of rest or physical exertion, or potentially a medical concern that would warrant further evaluation. Recognizing this normal range allows healthcare professionals to assess a child's cardiovascular status effectively and understand what may be considered abnormal for this age group.

10. What does the acronym PENMAN stand for in scene size-up?

- A. Personal protective equipment needed**
- B. Patient examination method analysis**
- C. Potential hazards identification**
- D. Personal equipment and needs assessment**

The correct interpretation of the acronym PENMAN in the context of scene size-up is that it stands for Personal protective equipment needed. This mnemonic is crucial for paramedics and emergency responders as it serves as a quick reminder to assess the scene for potential hazards that may pose risks to their safety. By identifying the necessary personal protective equipment, responders can ensure that they are properly equipped to handle the situation without compromising their safety. This focus on personal protective equipment is essential in emergency medical services, as different situations can present various dangers, such as chemical exposures, biohazards, or environmental risks. Ensuring that responders have the appropriate gear helps in maintaining a safe working environment and allows them to focus on providing care to the patient effectively. Other options may sound plausible, but they do not accurately represent the acronym PENMAN specifically. The emphasis is on ensuring safety through the identification of personal protective equipment necessary for the responders at the scene. This proactive approach supports the overall effectiveness and safety of the emergency response process.