

Organic Chemistry MCAT Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What can be estimated using size-exclusion chromatography?**
 - A. Molecular mass of compounds**
 - B. Optical activity of compounds**
 - C. Purity of the compounds**
 - D. Concentration of chiral centers**
- 2. Which reagent is commonly used to oxidize primary alcohols to aldehydes?**
 - A. KMnO₄**
 - B. Pyridinium chlorochromate**
 - C. NaBH₄**
 - D. LiAlH₄**
- 3. What is formed as the end product when an alkene undergoes hydrogenation?**
 - A. Alkane**
 - B. Alkoxide**
 - C. Alkyne**
 - D. Alcohol**
- 4. What is the effect of unhybridized p orbitals on resonance?**
 - A. They cannot participate in resonance**
 - B. They allow electrons to interact with adjacent atoms**
 - C. They lower the acidity of compounds**
 - D. They increase molecular weight**
- 5. What property does the pKa value of a compound indicate?**
 - A. The strength of a base**
 - B. The strength of an acid**
 - C. The stability of a conjugate base**
 - D. The solubility of a compound**

6. What is the primary effect of resonance stabilization in organic compounds?

- A. Delocalization of electrons**
- B. Formation of saturated compounds**
- C. Increase in acidity of compounds**
- D. Reduction in molecular weight**

7. How do phenols differ from alcohols regarding their acidity?

- A. Phenols are less acidic due to resonance stabilization**
- B. Phenols are more acidic due to resonance stabilization of their conjugate base**
- C. Alcohols are more acidic than phenols**
- D. There is no difference in acidity**

8. In imine formation, what type of amine acts as the nucleophile?

- A. Primary amine**
- B. Secondary amine**
- C. Tertiary amine**
- D. All types of amines**

9. When comparing diastereomers, what is true about their optical activity?

- A. They have identical optical rotation**
- B. They possess related optical activities**
- C. They can have unrelated optical activity**
- D. They are always optically inactive**

10. What is an epimer?

- A. A type of geometric isomer**
- B. A subset of diastereomers differing at one chiral center**
- C. A mirror image of a chiral molecule**
- D. A type of enantiomer**

Answers

SAMPLE

1. A
2. B
3. A
4. B
5. B
6. A
7. B
8. A
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What can be estimated using size-exclusion chromatography?

- A. Molecular mass of compounds**
- B. Optical activity of compounds**
- C. Purity of the compounds**
- D. Concentration of chiral centers**

Size-exclusion chromatography (SEC), also known as gel permeation chromatography or gel filtration chromatography, is a technique primarily used to separate molecules based on their size. In this method, a sample is passed through a column filled with porous beads; the pores allow smaller molecules to enter the beads, thus taking longer to elute from the column compared to larger molecules, which cannot enter the beads and pass through the column more quickly. Because of this selective separation based on size, SEC can provide an estimate of the molecular mass of compounds. As larger molecules elute faster than smaller ones, the retention time in the column can be correlated to the size and, consequently, the molecular mass of the substances present in the sample. Calibration with standards of known molecular weights helps in quantifying the molecular mass of unknown compounds. In contrast, other choices do not align with the primary function of this technique. Optical activity generally relates to the configuration of chiral centers and is measured using different methods, such as polarimetry. Purity of compounds can involve various analysis methods, including high-performance liquid chromatography (HPLC), which may offer more specific insights into the composition of mixtures. Concentration of chiral centers also requires distinct analytical tools, often focused on specific interactions with

2. Which reagent is commonly used to oxidize primary alcohols to aldehydes?

- A. KMnO₄**
- B. Pyridinium chlorochromate**
- C. NaBH₄**
- D. LiAlH₄**

Pyridinium chlorochromate (PCC) is a well-established reagent for the selective oxidation of primary alcohols to aldehydes. The reaction proceeds without further oxidation to carboxylic acids, which is a common drawback with some other oxidizing agents. PCC is favored because it provides a milder oxidation condition, allowing for the formation of aldehydes rather than over-oxidation to carboxylic acids. In contrast, other reagents listed do not selectively achieve this transformation. KMnO₄ is a strong oxidizing agent that can oxidize primary alcohols all the way to carboxylic acids and beyond. NaBH₄ is a reducing agent, primarily used for the reduction of carbonyl compounds rather than oxidation. LiAlH₄ is also a strong reducing agent, effective for converting esters and carboxylic acids to alcohols, but it does not oxidize primary alcohols. Therefore, the selective oxidation capability of PCC makes it the correct reagent for converting primary alcohols to aldehydes.

3. What is formed as the end product when an alkene undergoes hydrogenation?

- A. Alkane**
- B. Alkoxide**
- C. Alkyne**
- D. Alcohol**

When an alkene undergoes hydrogenation, the process involves the addition of hydrogen (H_2) across the carbon-carbon double bond of the alkene, resulting in the formation of an alkane. The hydrogenation reaction typically occurs in the presence of a catalyst, such as platinum, palladium, or nickel, which facilitates the breaking of the double bond and allows hydrogen atoms to bond to the carbon atoms. In this reaction, the unsaturated alkene, characterized by its double bond, becomes saturated as the newly added hydrogen atoms occupy the former double bond locations. Thus, the product is a saturated hydrocarbon with single bonds only – the alkane. On the other hand, other options like alkoxide, alkyne, or alcohol do not emerge from a straightforward hydrogenation reaction of alkenes. Alkoxides are typically formed from the reaction of alcohols with strong bases, alkynes are unsaturated hydrocarbons with carbon-carbon triple bonds, and alcohols result from hydration reactions, not from hydrogenation of alkenes. Therefore, the formation of an alkane is a direct result of hydrogenation.

4. What is the effect of unhybridized p orbitals on resonance?

- A. They cannot participate in resonance**
- B. They allow electrons to interact with adjacent atoms**
- C. They lower the acidity of compounds**
- D. They increase molecular weight**

Unhybridized p orbitals play a crucial role in resonance stabilization of molecular structures. They are involved in the delocalization of electrons, which is essential for resonance to occur. When a molecule has unhybridized p orbitals, these orbitals can overlap with p orbitals of adjacent atoms or groups. This overlap allows electrons to be shared across multiple atoms, ultimately leading to a more stable arrangement because the electron density is distributed over a larger area. This delocalization lowers the overall energy of the molecule, enhancing its stability. For example, in the case of conjugated systems or aromatic compounds, the presence of unhybridized p orbitals allows for π -bonding interactions that contribute to the resonance significance of the compound. The ability of these p orbitals to interact facilitates resonance structures, where the actual structure of the molecule is a hybrid of all possible resonance forms. Thus, they allow for increased electron mobility, which is a foundational element in understanding the behavior of many organic compounds.

5. What property does the pKa value of a compound indicate?

- A. The strength of a base
- B. The strength of an acid**
- C. The stability of a conjugate base
- D. The solubility of a compound

The pKa value of a compound is specifically related to the strength of an acid. It is defined as the negative logarithm of the acid dissociation constant (Ka) of a compound in solution. A lower pKa value indicates a stronger acid, meaning that the acid dissociates more readily to donate protons (H⁺ ions) in solution. Conversely, a higher pKa value reflects a weaker acid, which is less likely to dissociate. This relationship between pKa and acid strength is vital in organic chemistry, especially when evaluating acid-base reactions and understanding the behavior of various functional groups in different conditions. Since pKa directly correlates with the tendency of an acid to release protons, it serves as an essential parameter for predicting how a compound will react in acidic or basic environments. Understanding this concept allows chemists to make informed decisions about reaction mechanisms and the relative acidity of compounds.

6. What is the primary effect of resonance stabilization in organic compounds?

- A. Delocalization of electrons**
- B. Formation of saturated compounds
- C. Increase in acidity of compounds
- D. Reduction in molecular weight

Resonance stabilization primarily involves the delocalization of electrons across multiple atoms in a molecule, which leads to increased stability. This delocalization occurs when there are multiple valid Lewis structures, or resonance structures, for a single compound. Instead of being localized between two atoms, electrons in certain bonds (typically n electrons) can be thought of as being spread out or shared across several atoms. In practical terms, resonance can significantly affect the properties of a molecule, such as its reactivity and stability. For instance, in structures where resonance is significant, like benzene or carboxylate ions, this delocalization results in lower energy configurations compared to structures that do not engage in resonance. As a result, these compounds are usually more stable than their non-resonating counterparts. The other options provided relate to different aspects of molecular characteristics. While resonance can influence acidity, the primary function and definition of resonance stabilization relates directly to the delocalization of electrons. Similarly, saturation is a property of organic compounds concerning the number of hydrogen atoms in relation to the carbon backbone and is not a direct outcome of resonance. Additionally, resonance stabilization does not inherently reduce molecular weight; rather, it pertains to how electron density is distributed within the molecule.

7. How do phenols differ from alcohols regarding their acidity?

- A. Phenols are less acidic due to resonance stabilization**
- B. Phenols are more acidic due to resonance stabilization of their conjugate base**
- C. Alcohols are more acidic than phenols**
- D. There is no difference in acidity**

Phenols are indeed more acidic than typical alcohols, and this is primarily due to the resonance stabilization of their conjugate base. When a phenol loses a hydrogen ion (H^+), it forms a phenoxide ion. This phenoxide ion benefits from resonance stabilization because the negative charge can be delocalized across the aromatic ring. This delocalization makes the conjugate base more stable compared to that of alcohols, where the negative charge remains localized on the oxygen atom without similar resonance involvement. On the other hand, alcohols do not have this resonant delocalization when their conjugate bases are formed, meaning their conjugate bases are less stable. The increased stability of the phenoxide ion due to resonance makes phenols more likely to donate a proton, therefore explaining their greater acidity compared to alcohols. This key difference underlies why the correct choice is related to the enhanced resonance stabilization of the phenomenon occurring in phenols, which elevates their acidity relative to standard alcohols.

8. In imine formation, what type of amine acts as the nucleophile?

- A. Primary amine**
- B. Secondary amine**
- C. Tertiary amine**
- D. All types of amines**

In the process of imine formation, a primary amine serves as the nucleophile. This reaction involves the interaction between a carbonyl compound, such as an aldehyde or ketone, and a primary amine. The nucleophilic nitrogen in the primary amine has a lone pair of electrons that can readily attack the electrophilic carbon of the carbonyl group, resulting in the formation of an intermediate that eventually leads to an imine. Primary amines contain one alkyl or aryl group attached to the nitrogen, which allows for a sufficient electronic environment for nucleophilicity. In contrast, secondary amines, which have two organic substituents on the nitrogen, can also act as nucleophiles but have steric hindrance that may make the reaction less favorable compared to primary amines. Tertiary amines, having three substituents on the nitrogen, lack a hydrogen that can participate in the formation of an imine and typically do not react with carbonyl compounds to form imines. Thus, the role of the primary amine as the nucleophile in imine formation is attributed to its optimal balance of reactivity and sterics, making it the most suitable choice in this process.

9. When comparing diastereomers, what is true about their optical activity?

- A. They have identical optical rotation
- B. They possess related optical activities
- C. They can have unrelated optical activity**
- D. They are always optically inactive

Diastereomers are stereoisomers that are not related as mirror images, which distinguishes them from enantiomers. Due to their distinct configurations at one or more stereogenic centers, diastereomers can exhibit different physical properties, including varying levels of optical activity. The correct assertion is that diastereomers can have unrelated optical activity. This means that the specific optical rotation values for diastereomers can differ significantly from each other. One diastereomer may rotate plane-polarized light to the right (positive optical rotation) while the other may rotate it to the left (negative optical rotation), or they could both have different magnitudes of rotation. This variability arises because the presence of multiple stereogenic centers can affect the spatial arrangement of the molecule and, consequently, its interaction with light. In contrast, enantiomers, which are stereoisomers that are non-superimposable mirror images, will always have equal but opposite optical rotation values. Therefore, when looking at pairs of diastereomers, the diversity in their configurations leads to the possibility of their optical activities being completely different or unrelated.

10. What is an epimer?

- A. A type of geometric isomer
- B. A subset of diastereomers differing at one chiral center**
- C. A mirror image of a chiral molecule
- D. A type of enantiomer

An epimer is specifically a type of diastereomer that differs from another compound in configuration at just one of its multiple chiral centers. This definition is crucial because the distinguishing feature of epimers is this singular difference, which leads to distinct physical and chemical properties between the two molecules. For instance, in carbohydrate chemistry, glucose and galactose are epimers; they differ only in the configuration around one specific carbon atom (C4), while the configurations of the other chiral centers remain the same. This concept is significant in organic chemistry as it helps categorize stereoisomers based on their relationships and reactivity. This understanding is why the other answer choices do not fit the definition of an epimer. For example, geometric isomers relate to different orientations in space around a double bond, which is not relevant to epimers. Similarly, mirror images of chiral molecules represent enantiomers, while epimers do not necessarily exhibit this property, as they are not mirror images of each other, but rather variations at just one stereocenter.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://organicchemistrycat.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE