# Oregon Expanded Function Dental Assistant (EFDA) Practice Exam (Sample)

**Study Guide** 



Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

#### ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.



### **Questions**



- 1. Which of the following is NOT a type of elastomeric material?
  - A. Polysulfide
  - B. Polyether
  - C. Alginate
  - D. Silicone
- 2. Which area of dentistry typically utilizes a sectional matrix?
  - A. Pediatric dentistry
  - **B.** Orthodontics
  - C. Oral surgery
  - **D. Endodontics**
- 3. In dental procedures, what does the term "desensitizer" refer to?
  - A. A product that is only used after cavity removal
  - B. A treatment applied to reduce sensitivity
  - C. A base that enhances tooth strength
  - D. A method for improving the appearance of teeth
- 4. What are the classifications of impressions?
  - A. Preliminary, final, occlusal
  - B. Preliminary, final, bite registration
  - C. Preliminary, functional, occlusal
  - D. Final, impression, functional
- 5. What describes a perforated tray?
  - A. A tray designed for dental impressions with holes
  - B. A tray exclusively for radiographs
  - C. A tray for administering local anesthetics
  - D. A tray used only for orthodontic models

- 6. Subgingival calculus is typically characterized by:
  - A. A black, brown, or dark green color
  - B. A chalky white appearance
  - C. A smooth and shiny texture
  - D. A yellowish discoloration
- 7. What is the process known as polymerization in elastomerics?
  - A. Cooling process
  - **B.** Softening reaction
  - C. Curing reaction
  - D. Mixing reaction
- 8. What type of adhesive would likely be used for a VPS tray?
  - A. Iron oxide
  - **B.** Rubber base
  - C. Silicone
  - D. Acidic base
- 9. What is applied to a tray that is not perforated to ensure the impression material holds in place?
  - A. Water
  - **B.** Adhesive
  - C. Dental wax
  - D. Gauze
- 10. What does the spindle on a tofflemire resemble?
  - A. A flat surface
  - B. A screw
  - C. A lever
  - D. A chain

### **Answers**



- 1. C 2. A 3. B

- 3. B 4. B 5. A 6. A 7. C 8. B 9. B 10. B



### **Explanations**



### 1. Which of the following is NOT a type of elastomeric material?

- A. Polysulfide
- **B.** Polyether
- C. Alginate
- D. Silicone

Elastomeric materials are characterized by their elastic properties, meaning they can undergo significant deformation and return to their original shape without permanent deformation. They are commonly used in dentistry for making impressions and various other applications. Polysulfide, polyether, and silicone are all types of elastomeric materials. They possess the flexibility and rubber-like properties that make them suitable for dental impression materials. This allows them to accurately capture fine details of the dental anatomy, which is crucial for creating precise molds for restorative procedures. In contrast, alginate does not exhibit the same elastic properties as these elastomeric materials. Alginate is classified as a hydrocolloid and is used primarily for making impressions as well, but it behaves differently. When alginate sets, it does not possess the rebound characteristics found in elastomers and is generally less precise for detail capturing compared to polysulfide, polyether, and silicone. Thus, it cannot be classified as an elastomeric material. This distinction is crucial for dental assistants in selecting appropriate materials for various dental procedures.

### 2. Which area of dentistry typically utilizes a sectional matrix?

- A. Pediatric dentistry
- **B.** Orthodontics
- C. Oral surgery
- **D. Endodontics**

A sectional matrix is commonly utilized in restorative dentistry procedures, particularly for posterior teeth restorations, as it aids in creating a proper contact point between adjacent teeth. In the context of pediatric dentistry, where smaller teeth and the need for precise restoration are significant, the sectional matrix is especially beneficial. This matrix allows for better adaptation to the cavity preparation, facilitating a tight interproximal contact and minimizing the risk of food impaction, which is essential in young patients who may have less mature dental anatomy. In contrast, orthodontics focuses on the alignment and positioning of teeth, making the use of matrices less relevant. Oral surgery often involves the extraction or surgical modification of dental structures, where matrices are not typically needed. Endodontics, primarily concerned with root canal treatments, also does not commonly require a sectional matrix, as the focus is primarily on the pulp space and not on the restoration of the tooth's external structure. Thus, the role of a sectional matrix in facilitating effective restorations is critical in pediatric dentistry, making it the area of dentistry where it is typically utilized.

- 3. In dental procedures, what does the term "desensitizer" refer to?
  - A. A product that is only used after cavity removal
  - B. A treatment applied to reduce sensitivity
  - C. A base that enhances tooth strength
  - D. A method for improving the appearance of teeth

The term "desensitizer" specifically refers to a treatment applied to reduce sensitivity in teeth. This sensitivity often arises from various dental procedures, especially when the dentin layer of the teeth is exposed due to conditions such as cavities, gum recession, or after certain dental treatments. Desensitizers work by blocking the nerve endings in the exposed areas of the dentin or by creating a protective barrier, which helps to alleviate discomfort experienced by patients when exposed to hot, cold, or sweet stimuli. This is distinct from the other options, which address different dental materials and treatments. While a desensitizer could indeed be used after a cavity removal, it is not limited to that specific application; therefore, simply identifying it as a product used post-cavity removal is insufficient to represent its broader use in dentistry. Similarly, while a base may enhance tooth strength, this function does not align with desensitizing. Lastly, a method for improving the appearance of teeth relates to cosmetic treatments rather than sensitivity management. Thus, the correct answer accurately captures the primary role of desensitizers in dental care.

- 4. What are the classifications of impressions?
  - A. Preliminary, final, occlusal
  - B. Preliminary, final, bite registration
  - C. Preliminary, functional, occlusal
  - D. Final, impression, functional

The classifications of impressions are indeed categorized as preliminary, final, and bite registration. Preliminary impressions are often taken to create study models, which are used for treatment planning or appliance fabrication. They are typically less detailed and serve as a starting point for further dental procedures. Final impressions, on the other hand, are much more precise and are used to create definitive restorations or prosthetics, such as crowns or dentures. These impressions capture the exact contours of the oral structures and are essential for the accuracy of the fitting of the final product. Bite registration impressions record the occlusion of the patient's jaws, which is crucial for ensuring that any dental work maintains the correct bite relationship. This helps to prevent any discomfort or misalignment in the future. Understanding these classifications is vital in the practice of dentistry, as each type of impression serves a distinct purpose in the overall treatment process, allowing for both effective diagnosis and the creation of appropriate dental solutions.

#### 5. What describes a perforated tray?

- A. A tray designed for dental impressions with holes
- B. A tray exclusively for radiographs
- C. A tray for administering local anesthetics
- D. A tray used only for orthodontic models

A perforated tray is specifically designed for dental impressions and features holes that allow the impression material to flow through and create a better bond with the tray. The perforation facilitates the removal of the impression once it has set, ensuring that the material adheres adequately to the tray during the impression process. This design is crucial in obtaining accurate impressions that reflect the details of the teeth and oral structures. The holes also help minimize the risk of distortion during impression removal. The other options describe trays that serve different purposes. For instance, while a tray for radiographs would be critical in capturing images of the teeth and surrounding structures, it does not need perforations for this function. Similarly, a tray for administering local anesthetics would not require a design focused on impressions, and a tray used solely for orthodontic models would be tailored specifically for that type of impression, possibly without perforations. Thus, the defining characteristic of a perforated tray is its suitability for obtaining dental impressions.

#### 6. Subgingival calculus is typically characterized by:

- A. A black, brown, or dark green color
- B. A chalky white appearance
- C. A smooth and shiny texture
- D. A yellowish discoloration

Subgingival calculus is primarily formed beneath the gumline and is often identified by its coloration. It typically has a black, brown, or dark green color due to the mineralization of bacteria and the presence of pigments from blood and other sources. This dark coloration can make it easier to differentiate from supragingival calculus, which is found above the gumline and can appear lighter in color. The other options do not accurately reflect the characteristics of subgingival calculus. A chalky white appearance is more commonly associated with supragingival calculus that is primarily formed from saliva. A smooth and shiny texture is not typical for subgingival calculus, which can be rough due to its mineralized nature. Yellowish discoloration can also describe supragingival deposits or stains rather than the more mineralized, darker deposits that characterize subgingival calculus. Consequently, understanding these color and texture attributes crucially aids in the identification and management of periodontal disease.

### 7. What is the process known as polymerization in elastomerics?

- A. Cooling process
- **B.** Softening reaction
- C. Curing reaction
- D. Mixing reaction

Polymerization in elastomerics refers to the curing reaction, a critical step where the monomers or prepolymers undergo a chemical transformation to form a solid or a cross-linked network. This process enhances the physical properties of the elastomer, transforming it from a liquid state or a pre-cured form into a stable, hard material suitable for its intended use, such as in dental impression materials or orthodontic devices. During polymerization, chemical bonds are formed between individual polymer chains, which leads to an increase in viscosity and eventually results in a material with the desired mechanical and thermal properties. The curing reaction is essential for achieving the desired flexibility, strength, and resilience of elastomers. Other options, such as a cooling process, softening reaction, or mixing reaction, do not accurately describe the polymerization process. Cooling is simply about lowering temperature, softening refers to making a material easier to deform without changing its overall structure, and mixing is a preliminary step before polymerization occurs, but it does not embody the essential chemical transformation that characterizes curing. Thus, the curing reaction is the correct answer in the context of polymerization for elastomeric materials.

#### 8. What type of adhesive would likely be used for a VPS tray?

- A. Iron oxide
- **B.** Rubber base
- C. Silicone
- D. Acidic base

The correct choice for an adhesive used in conjunction with a VPS (Vinyl Polysiloxane) tray is a rubber base adhesive. VPS materials are known for their excellent dimensional stability, accuracy, and ease of use in dental impressions. Rubber base adhesives provide strong adhesion to various substrates, which is crucial when securing a VPS tray during the impression process. This ensures that the impression material remains in position, capturing details accurately and preventing distortion. In contrast to other types of adhesives listed, such as iron oxide, silicone, and acidic base adhesives, rubber base adhesives are specifically designed to complement the properties of VPS materials. Iron oxide is used primarily as a pigment and lacks the bonding properties needed for this context. Silicone adhesives are generally not formulated for bonding VPS materials effectively, while acidic base adhesives might cause reactions with the VPS material that can compromise the integrity of the impression. Overall, rubber base adhesive is the most suitable choice for ensuring a reliable and effective bonding between the VPS tray and the impression material, leading to a high-quality dental impression.

## 9. What is applied to a tray that is not perforated to ensure the impression material holds in place?

- A. Water
- **B.** Adhesive
- C. Dental wax
- D. Gauze

The application of adhesive to a non-perforated tray is essential because it creates a strong bond between the impression material and the tray. This ensures that the impression material remains securely in place during the impression-taking process, allowing for an accurate reproduction of the oral structures. In non-perforated trays, there are no holes to mechanically retain the impression material, which makes it vital to use an adhesive that can enhance adherence and prevent any movement that could distort the impression. The adhesive acts as a sticky interface, providing the necessary support for the impression material to stay attached to the tray while also ensuring that it captures details accurately. Other substances such as water, dental wax, and gauze are not typically used for this purpose. Water may be used in different contexts, but it does not create adhesion. Dental wax can be helpful for other applications in dentistry but does not serve the same purpose as adhesive in this scenario. Gauze is also unrelated to tray adhesion. Thus, utilizing adhesive is the most effective method to maintain the integrity of the impression and achieve reliable results.

#### 10. What does the spindle on a tofflemire resemble?

- A. A flat surface
- B. A screw
- C. A lever
- D. A chain

The spindle on a Tofflemire retainer resembles a screw because it is designed to adjust and hold the matrix band in place for the placement of dental restorations. The mechanism of the spindle involves rotating it, similar to turning a screw, which tightens or loosens the matrix band around the tooth. This allows for precise control when shaping and forming the restoration, ensuring that it fits correctly around the tooth being treated. The design is functional, facilitating easy adjustments, and mirrors the principles of a screw's movement, where turning it changes its position relative to other components. Understanding this mechanism is essential for effectively using the Tofflemire retainer in dental procedures.