

ONS Chemotherapy Immunotherapy Certificate Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which type of cancer is doxorubicin most commonly associated with treating?**
 - A. Melanoma**
 - B. Breast cancer**
 - C. Colorectal cancer**
 - D. Thyroid cancer**

- 2. What is the primary goal of active immunotherapy?**
 - A. To increase tumor size rapidly**
 - B. To mount an immune response against tumor cells**
 - C. To directly kill healthy surrounding tissues**
 - D. To prolong the life of existing cancer cells**

- 3. Why are checkpoint inhibitors significant in treating cancer?**
 - A. They stimulate bacteria to fight tumors**
 - B. They help prevent immune suppression of T cells**
 - C. They directly destroy cancer cells**
 - D. They promote the growth of tumor blood vessels**

- 4. What is the primary action of hormone therapy in cancer treatment?**
 - A. Enhances the effectiveness of chemotherapy**
 - B. Adds, blocks, or removes hormones to interrupt cancer cell division**
 - C. Stimulates the immune response against the cancer**
 - D. Directly kills cancer cells through toxicity**

- 5. Which of the following is a nonsteroidal aromatase inhibitor?**
 - A. Exemestane**
 - B. Letrozole**
 - C. Testosterone**
 - D. Anastrozole**

6. Patients receiving low-potential emetogenic chemotherapy develop CINV ___% to ___% of the time.

- A. 5-15%**
- B. 10-30%**
- C. 20-40%**
- D. 30-50%**

7. What role does a ligand play in cellular signaling?

- A. It inhibits receptor activity**
- B. It binds to a receptor to exert a biological effect**
- C. It destroys cellular components**
- D. It stabilizes the cell membrane**

8. Which type of therapy involves the administration of modified viruses to target cancer cells?

- A. Cancer vaccines**
- B. Oncolytic virus therapy**
- C. Adoptive cell therapy**
- D. Immune checkpoint inhibitors**

9. What is a key characteristic of a hypersensitivity reaction (HSR)?

- A. Systemic and severe**
- B. Localized tissue injury**
- C. Immediate respiratory distress**
- D. Release of cortisol**

10. What is dimerization?

- A. Formation of a protein complex from multiple chains**
- B. Pairing of two monomers on the cell surface**
- C. Separation of receptors from their ligands**
- D. Activation of multiple signaling pathways simultaneously**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. B
6. B
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Which type of cancer is doxorubicin most commonly associated with treating?

- A. Melanoma**
- B. Breast cancer**
- C. Colorectal cancer**
- D. Thyroid cancer**

Doxorubicin is an anthracycline chemotherapy drug that has been shown to be highly effective in treating breast cancer. This cancer type commonly expresses the molecular targets that doxorubicin works against, making it a first-line treatment option. The drug functions by intercalating DNA and inhibiting topoisomerase II, which disrupts DNA replication and leads to cell death. The efficacy of doxorubicin in breast cancer has been well documented through numerous clinical trials and studies, establishing it as a cornerstone in the treatment regimens for this disease. In contrast, while doxorubicin may have some role in the treatment of other cancers, such as melanoma, colorectal cancer, and thyroid cancer, it is not as commonly or specifically associated with those types as it is with breast cancer. This specific association with breast cancer makes it a critical part of the treatment protocols for patients diagnosed with this condition, particularly in cases that are diagnosed at an earlier stage or have a higher risk of metastasis.

2. What is the primary goal of active immunotherapy?

- A. To increase tumor size rapidly**
- B. To mount an immune response against tumor cells**
- C. To directly kill healthy surrounding tissues**
- D. To prolong the life of existing cancer cells**

The primary goal of active immunotherapy is to mount an immune response against tumor cells. Active immunotherapy works by stimulating the immune system to recognize and attack cancer cells more effectively. This approach enhances the body's natural defenses, enabling it to identify and destroy malignant cells that might otherwise evade detection. In contrast to other options, which suggest harmful outcomes or do not align with the principles of immunotherapy, the focus on eliciting an immune response is a core component of this treatment modality. Active immunotherapy can utilize various strategies, such as vaccines or immune checkpoint inhibitors, to enhance the body's ability to combat cancer. By facilitating a robust immune response specifically targeting tumor-associated antigens, this treatment aims to reduce tumor growth or prevent recurrence, making it a central strategy in modern oncology.

3. Why are checkpoint inhibitors significant in treating cancer?

- A. They stimulate bacteria to fight tumors
- B. They help prevent immune suppression of T cells**
- C. They directly destroy cancer cells
- D. They promote the growth of tumor blood vessels

Checkpoint inhibitors play a crucial role in cancer treatment because they help prevent immune suppression of T cells, which is vital for an effective immune response against tumors. Cancer cells often utilize checkpoint pathways to avoid detection and destruction by the immune system. By inhibiting these checkpoint proteins, such as PD-1, PD-L1, or CTLA-4, these therapies essentially "release the brakes" on the immune system, enabling T cells to recognize and attack cancer cells more effectively. The ability of checkpoint inhibitors to enhance T cell activity results in a more robust and durable immune response, which can lead to long-lasting remission in some patients. This is particularly important in certain types of cancers that have shown responsiveness to immunotherapy, allowing individuals who may not have responded well to traditional treatments, like chemotherapy or radiation, to find new hope through these innovative therapies. In contrast, the other options describe mechanisms that do not accurately represent how checkpoint inhibitors function or their role in cancer therapy. For instance, stimulating bacteria or promoting blood vessel growth are not characteristics associated with checkpoint inhibitors and do not contribute to their effectiveness against tumors.

4. What is the primary action of hormone therapy in cancer treatment?

- A. Enhances the effectiveness of chemotherapy
- B. Adds, blocks, or removes hormones to interrupt cancer cell division**
- C. Stimulates the immune response against the cancer
- D. Directly kills cancer cells through toxicity

The primary action of hormone therapy in cancer treatment is to add, block, or remove hormones to interrupt cancer cell division. Hormone-sensitive cancers, such as some types of breast and prostate cancer, rely on hormones to grow and divide. By manipulating hormone levels, hormone therapy can effectively slow down or stop the growth of these cancers. For instance, in certain breast cancers, estrogen can promote tumor growth. Anti-estrogen medications, such as tamoxifen or aromatase inhibitors, block the action of estrogen or lower its levels in the body, thereby reducing stimulation of the cancer cells and allowing the body to maintain better control over the disease. Similarly, in prostate cancer, hormone therapies can reduce levels of testosterone, which can drive the growth of prostate tumors. This mechanism of disrupting the hormonal signals that cancer cells depend on distinguishes hormone therapy from other treatment modalities such as chemotherapy, which aims to directly kill rapidly dividing cells, or immunotherapy, which seeks to enhance the body's immune response against cancer.

5. Which of the following is a nonsteroidal aromatase inhibitor?

- A. Exemestane**
- B. Letrozole**
- C. Testosterone**
- D. Anastrozole**

Letrozole is classified as a nonsteroidal aromatase inhibitor, meaning it works by blocking the aromatase enzyme, which is responsible for converting androgens into estrogens. This mechanism is particularly useful in the treatment of hormone receptor-positive breast cancer in postmenopausal women, as lowering estrogen levels can help slow the growth of certain types of breast tumors that require estrogen to grow. The action of letrozole effectively reduces circulating estrogen levels, which can be a significant factor in managing the progression of hormone-sensitive breast cancers. It is important to note that aromatase inhibitors like letrozole are often preferred in specific clinical settings due to their side effect profiles compared to other forms of hormonal therapies. In contrast, other choices in the list either do not serve the same function or belong to different categories of drugs. For example, exemestane is a steroidal aromatase inhibitor, not nonsteroidal, while testosterone does not have an inhibitory effect on aromatase as it primarily acts as a male sex hormone. Anastrozole is another effective nonsteroidal aromatase inhibitor and is often used for the same indications as letrozole, making it also a correct option if considered separately. However

6. Patients receiving low-potential emetogenic chemotherapy develop CINV ___% to ___% of the time.

- A. 5-15%**
- B. 10-30%**
- C. 20-40%**
- D. 30-50%**

Patients receiving low-potential emetogenic chemotherapy are estimated to develop chemotherapy-induced nausea and vomiting (CINV) in a range of 10% to 30% of the time. This percentage is based on clinical studies that classify emetogenic potential into different categories, with low-potential emetogenic regimens being one of them. In understanding the specific range of 10% to 30%, it's important to recognize that while low emetogenicity implies a lower risk compared to moderate or highly emetogenic chemotherapy agents, patients can still experience CINV. This phenomenon is influenced by factors including the specific drug used, the patient's individual characteristics, and their previous experiences with CINV. It is significant for healthcare providers to be aware of this range to effectively counsel and manage patients undergoing treatment. Other options either overestimate or underestimate the occurrence of CINV associated with low-potential emetogenic chemotherapy. Thus, understanding the correct incidence range helps in providing the right anticipatory guidance and interventions to minimize discomfort for the patient during treatment.

7. What role does a ligand play in cellular signaling?

- A. It inhibits receptor activity
- B. It binds to a receptor to exert a biological effect**
- C. It destroys cellular components
- D. It stabilizes the cell membrane

A ligand plays a crucial role in cellular signaling by binding to a receptor, which then initiates a series of biological effects within the cell. This binding can activate the receptor, leading to a cascade of intracellular events that may result in various outcomes such as gene expression, enzyme activation, or changes in cell behavior. The interaction between a ligand and its receptor is fundamental to many physiological processes, including immune responses, hormone action, and neurotransmission. The specific nature of the ligand-receptor interaction determines the specificity and efficacy of the signaling pathway activated, illustrating the importance of this relationship in cellular communication and function. In contrast, other options do not accurately represent the primary function of a ligand in signaling. For example, ligands do not inhibit receptor activity; rather, they typically enhance or initiate it. Additionally, ligands are not responsible for destroying cellular components or stabilizing the cell membrane; those functions are attributed to other cellular mechanisms and molecules. By understanding the binding role of ligands in cellular signaling, one can appreciate how cells communicate and respond to their environment.

8. Which type of therapy involves the administration of modified viruses to target cancer cells?

- A. Cancer vaccines
- B. Oncolytic virus therapy**
- C. Adoptive cell therapy
- D. Immune checkpoint inhibitors

Oncolytic virus therapy specifically refers to the use of genetically modified viruses that selectively infect and kill cancer cells while sparing normal cells. The modified viruses are designed to replicate within the tumor, leading to the destruction of cancer cells and the induction of an immune response against the tumor. This method harnesses the natural ability of some viruses to target and destroy malignant cells, providing a novel approach to cancer treatment. In contrast, cancer vaccines are designed to stimulate the immune system to recognize and attack cancer cells, but they do not involve the direct use of viruses. Adoptive cell therapy involves the modification and infusion of immune cells to enhance the body's ability to fight cancer, which is a distinct technique. Immune checkpoint inhibitors function by blocking proteins that suppress the immune response to cancer cells, again differing fundamentally from the viral manipulation seen in oncolytic virus therapy. Therefore, oncolytic virus therapy is the correct term to describe the administration of modified viruses to target cancer cells.

9. What is a key characteristic of a hypersensitivity reaction (HSR)?

- A. Systemic and severe
- B. Localized tissue injury**
- C. Immediate respiratory distress
- D. Release of cortisol

A key characteristic of a hypersensitivity reaction is localized tissue injury.

Hypersensitivity reactions are categorized into four types, with each type exhibiting different mechanisms and effects on the body. Localized tissue injury typically occurs in response to an allergen or immune trigger, leading to symptoms in specific areas of the body, such as skin, respiratory system, or gastrointestinal tract. In many cases, the injury results from the immune system's overreaction, causing inflammation and damage to tissues in the area affected. Examples include allergic reactions like contact dermatitis or asthma, where the localized response can lead to swelling, redness, and other symptoms. While systemic and severe reactions, immediate respiratory distress, and the release of cortisol can be associated with certain hypersensitivity responses, they are not universally characteristic of all types of hypersensitivity reactions. For instance, systemic reactions often pertain to anaphylaxis, which is a specific severe type of hypersensitivity. Immediate respiratory distress might be seen in certain asthma attacks or anaphylactic reactions but is not a defining feature of all hypersensitivity types. Similarly, cortisol release could occur in response to stress or inflammation but isn't a unique aspect of hypersensitivity reactions themselves.

10. What is dimerization?

- A. Formation of a protein complex from multiple chains
- B. Pairing of two monomers on the cell surface**
- C. Separation of receptors from their ligands
- D. Activation of multiple signaling pathways simultaneously

Dimerization refers to the process by which two monomer units, which can be proteins, peptides, or other molecules, pair together to form a stable dimer. In the context of cellular biology, this often occurs on the cell surface and is crucial for many signaling pathways. When two monomers pair, this interaction can facilitate various biological functions, such as changing the conformation of the proteins involved or activating signaling cascades by bringing them into close proximity. This pairing is fundamental for receptor functioning; many receptors require dimerization for activation. For instance, receptor tyrosine kinases often exist as monomers and need to dimerize upon ligand binding, which leads to autophosphorylation and the subsequent activation of downstream signaling pathways. The other choices do not accurately define dimerization. Formation of a protein complex from multiple chains may imply oligomerization rather than strict dimerization, separation of receptors from their ligands describes a completely different interaction, and activation of multiple signaling pathways simultaneously goes beyond the specific interaction of two monomers teaming up to form a dimer. Thus, the process outlined in the correct answer highlights the specific interaction involved in dimerization and its importance in cellular signaling.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://onschemotherapyimmunotherapy.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE