Ohio Fire Extinguisher Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Which type of fire class extinguisher would be most effective on fires involving paper and wood?
 - A. A
 - **B. C**
 - C. B
 - D. D
- 2. Under what condition does a class "C" fire become essentially a class "A" or "B" fire?
 - A. When it is fully extinguished
 - B. When it has spread beyond control
 - C. When it is no longer energized
 - D. When it is in an open area
- 3. What is the reason CO2 extinguishers are technically not classified as extinguishers?
 - A. Because they contain water
 - B. Because a cylinder cannot have CO2 in it
 - C. Because they do not contain any propellant
 - D. Because they are not portable
- 4. During the recharging process, what is the maximum pressure that should be set above the operating service pressure?
 - A. 50 psi
 - B. 30 psi
 - C. 20 psi
 - D. 25 psi
- 5. What is the purpose of the additive material in dry chemicals for extinguishers?
 - A. To enhance the color of the powder
 - B. To provide resistance to moisture absorption
 - C. To improve the weight of the extinguisher
 - D. To make the powder less flaky

- 6. What is the term for an extinguisher with the propellant stored outside the cylinder in a cartridge?
 - A. Stored pressure
 - **B.** Cartridge operated
 - C. Wet chemical
 - D. Foam
- 7. Water can be harmful when used on which type of fire?
 - A. Class B
 - B. Class K
 - C. Class C
 - D. Class A
- 8. Which characteristic describes stored-pressure fire extinguishers?
 - A. They use separate containers for agent and gas
 - B. They contain both material and gas in a single container
 - C. They are only for dry chemical agents
 - D. They cannot be transported
- 9. Which type of extinguishing agent should be inspected within 30 days?
 - A. Class A agents
 - B. Class B agents
 - C. Class D agents
 - D. Class K agents
- 10. Extinguishers listed for the Class C rating must not contain agents that can conduct what?
 - A. Water
 - B. Gasoline
 - C. Electricity
 - D. Foam

Answers

- 1. A 2. C

- 2. C 3. B 4. D 5. B 6. B 7. C 8. B 9. C 10. C

Explanations

- 1. Which type of fire class extinguisher would be most effective on fires involving paper and wood?
 - **A. A**
 - **B. C**
 - C. B
 - D. D

The most effective type of fire extinguisher for fires involving paper and wood is Class A. Class A extinguishers are specifically designed to combat fires fueled by ordinary combustibles such as paper, wood, cloth, and some types of plastics. When using a Class A extinguisher, you can effectively cool and extinguish these fires, as the agents are tailored to absorb heat and remove the fuel source. Class B extinguishers, on the other hand, are intended for flammable liquids and gases, making them unsuitable for materials like paper and wood. Class C extinguishers are for electrical fires, and Class D extinguishers are used for combustible metals, which have very different properties and require specific extinguishing agents. Therefore, when it comes to fires involving common materials such as paper and wood, Class A extinguishers are the correct choice due to their specialized capability to handle these types of fires effectively.

- 2. Under what condition does a class "C" fire become essentially a class "A" or "B" fire?
 - A. When it is fully extinguished
 - B. When it has spread beyond control
 - C. When it is no longer energized
 - D. When it is in an open area

A Class "C" fire involves energized electrical equipment. When the fire is no longer energized, it essentially loses its classification as a Class "C" fire because the main hazard associated with that category—live electrical currents—is removed. Once the electrical source is turned off or disconnected, the fire may then be treated as a Class "A" fire (ordinary combustible materials) or a Class "B" fire (flammable liquids) depending on what materials are actually burning. Understanding this transition is critical for fire safety, as it informs the appropriate extinguishing method to use. For instance, while a Class "C" fire requires extinguishing agents that do not conduct electricity (like carbon dioxide or dry chemical fire extinguishers), a Class "A" or "B" fire may be effectively tackled with water (in the case of Class "A") or foam and CO2 (for Class "B"), once the electrical hazard is no longer present. This distinction is essential for both safety and effectiveness in firefighting efforts.

- 3. What is the reason CO2 extinguishers are technically not classified as extinguishers?
 - A. Because they contain water
 - B. Because a cylinder cannot have CO2 in it
 - C. Because they do not contain any propellant
 - D. Because they are not portable

The notion that CO2 extinguishers are not classified as extinguishers because a cylinder cannot have CO2 in it is rooted in a misunderstanding of how these extinguishers are designed and function. In fact, CO2 extinguishers are recognized as legitimate extinguishing agents that effectively combat specific types of fires, particularly those involving flammable liquids and electrical equipment. CO2 extinguishers work by displacing oxygen in the surrounding environment and suppressing the fire in the process. These extinguishers contain carbon dioxide, a gas stored under pressure, which is released when the extinguisher is activated. The correct classification of CO2 extinguishers is due to their specific operational mechanism and the function they serve in fire safety. The other options presented do not accurately reflect information about CO2 extinguishers. For instance, water is not present in CO2 extinguishers as they utilize a different extinguishing principle. Likewise, CO2 is indeed stored in a pressurized cylinder intended for this very purpose, and CO2 extinguishers are typically designed to be portable for ease of use in emergency situations. Understanding these characteristics is crucial for recognizing the role CO2 extinguishers play in firefighting efforts.

- 4. During the recharging process, what is the maximum pressure that should be set above the operating service pressure?
 - A. 50 psi
 - B. 30 psi
 - C. 20 psi
 - D. 25 psi

During the recharging process of a fire extinguisher, it is essential to ensure that the pressure is set correctly to ensure optimal functionality and safety. The correct maximum pressure above the operating service pressure is 25 psi. This standard helps maintain the effectiveness of the fire extinguisher while ensuring it operates within safe limits. Setting the recharge pressure above the normal operating service pressure by 25 psi allows for variations that can occur due to temperature changes or other factors while still keeping the fire extinguisher functional and reliable. When the pressure is too low, the extinguisher may not provide sufficient discharge capability in the event of a fire, while excessively high pressure could risk rupturing the extinguisher or impairing its operation. Understanding these parameters is crucial for anyone involved with fire safety equipment, as proper maintenance of fire extinguishers plays a vital role in fire prevention strategies.

- 5. What is the purpose of the additive material in dry chemicals for extinguishers?
 - A. To enhance the color of the powder
 - B. To provide resistance to moisture absorption
 - C. To improve the weight of the extinguisher
 - D. To make the powder less flaky

The additive material in dry chemicals for extinguishers serves to provide resistance to moisture absorption. This is crucial because moisture can cause dry chemical agents to clump together or lose their effectiveness, which would inhibit their ability to extinguish a fire. By preventing moisture absorption, the additive ensures that the dry chemical remains free-flowing and maintains its effectiveness when required. This characteristic is particularly important for fire extinguishers that may be stored in environments with high humidity or varying temperatures. Enhancing moisture resistance safeguards the reliability of the extinguisher, allowing it to perform optimally during an emergency situation.

- 6. What is the term for an extinguisher with the propellant stored outside the cylinder in a cartridge?
 - A. Stored pressure
 - **B.** Cartridge operated
 - C. Wet chemical
 - D. Foam

The correct term for an extinguisher with the propellant stored outside the cylinder in a cartridge is "cartridge operated." In this design, the propellant, typically in a separate cartridge, is not contained within the main cylinder of the extinguisher itself. This allows for different extinguishing agents to be used while maintaining the integrity and safety of the main cylinder. Cartridge operated extinguishers can offer advantages in terms of maintenance and reliability. For instance, separating the propellant from the extinguishing agent can help reduce the risk of corrosion and pressure loss. When activated, the cartridge propellant is released to propel the extinguishing agent into the fire. This mechanism can ensure that the extinguisher delivers a consistent and reliable discharge. The other choices refer to different types or mechanisms of fire extinguishers that do not specifically involve a cartridge for propellant storage. Understanding these distinctions is crucial for proper fire prevention practices and recognizing the correct use of fire extinguishers in various emergency situations.

7. Water can be harmful when used on which type of fire?

- A. Class B
- B. Class K
- C. Class C
- D. Class A

Water can be harmful when used on Class C fires, which involve electrical equipment. The reason for this is that water is a conductive material. When water is applied to an electrical fire, it can conduct electricity, posing a serious risk of electric shock to anyone attempting to extinguish the fire. Furthermore, using water on a Class C fire can exacerbate the situation by allowing the fire to spread, especially if the water causes a short circuit or if it comes into contact with live wires. For clarity, Class B fires, which involve flammable liquids, and Class K fires, associated with cooking oils and fats, should not be put out with water as well; however, the primary concern with water is its conductivity on Class C fires. Class A fires, which involve ordinary combustibles like wood and paper, can be effectively extinguished with water, as it helps to cool and suppress the fire without the risks seen with electrical fires.

8. Which characteristic describes stored-pressure fire extinguishers?

- A. They use separate containers for agent and gas
- B. They contain both material and gas in a single container
- C. They are only for dry chemical agents
- D. They cannot be transported

Stored-pressure fire extinguishers are designed with both the extinguishing agent and the propellant gas housed within a single container. This design allows for immediate discharge of the extinguishing agent when the handle is activated, as the pressurized gas forces the agent out through the nozzle. This characteristic is key because it enables the user to respond quickly in emergency situations with a compact and easily transportable device. The stored pressure design simplifies the extinguisher's operation and maintenance, as it reduces the complexity associated with separate containers for the extinguishing agent and the propellant. The other choices do not accurately reflect the nature of stored-pressure extinguishers, as they may focus on misunderstandings regarding the structure, types of agents used, or transportation capabilities. For example, stored-pressure extinguishers can contain various agents, not limited to dry chemicals, and they are designed for ease of transportation.

9. Which type of extinguishing agent should be inspected within 30 days?

- A. Class A agents
- B. Class B agents
- C. Class D agents
- D. Class K agents

Class D agents are specifically designed for extinguishing fires involving combustible metals, such as magnesium, titanium, and sodium. These types of materials require special handling and unique extinguishing methods because conventional extinguishing agents can be ineffective or even hazardous when used on metal fires. The inspection frequency for Class D extinguishing agents is determined by the unique risks associated with these metals. Performing inspections within a 30-day window ensures that the equipment is operational and ready for immediate use in case of a fire involving these high-risk materials. Regular inspection helps to ensure that the extinguishing agent is easily accessible and functioning correctly, which is crucial given the potential for rapid escalation of fires involving combustible metals. Understanding the specific requirements for different classes of extinguishing agents reinforces the importance of following safety protocols tailored to the unique hazards presented by various materials.

10. Extinguishers listed for the Class C rating must not contain agents that can conduct what?

- A. Water
- **B.** Gasoline
- C. Electricity
- D. Foam

The reason for selecting the option related to electricity is grounded in the functional design of Class C fire extinguishers. Class C extinguishers are specifically intended for use on fires involving energized electrical equipment. As such, these extinguishers utilize agents that do not conduct electricity, ensuring the safety of the user and the effectiveness of the firefighting strategy. If an extinguisher contained agents that conduct electricity, using it on an electrical fire could lead to electrocution or further exacerbate the fire. This is why agents that conduct electricity are strictly avoided in Class C extinguishers. The focus is on agents like CO2 or dry chemical agents, which do not carry electrical conductivity and thus provide a safe method to extinguish fires involving live electrical components. The other options listed, including water, gasoline, and foam, are not relevant to the electrical conductivity of fire extinguishing agents in this context. Water, for instance, can conduct electricity and is therefore not used on electrical fires, but it does not specifically address the Class C rating's requirement to avoid conductive agents. Gasoline is a flammable material and not part of extinguishing agents, while foam is typically used for Class B fires dealing with flammable liquids. Understanding the focus on electrical safety