

Officer Aptitude Rating (OAR) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. What method is used to increase the effort of a lever arm?**
 - A. Increase the load's weight**
 - B. Decrease the length of the lever**
 - C. Increase the length and adjust pressure**
 - D. Use a different material for the lever**

- 2. What is the primary function of a sextant in navigation?**
 - A. To measure time**
 - B. To determine speed**
 - C. To measure angles for celestial navigation**
 - D. To calculate distance**

- 3. What is the typical trace composition of air aside from nitrogen and oxygen?**
 - A. Only carbon dioxide**
 - B. Argon**
 - C. Hydrogen and other rare gases**
 - D. All of the above**

- 4. In a pulley system, which pulley will turn faster?**
 - A. The largest pulley**
 - B. The smallest pulley**
 - C. All pulleys turn at the same speed**
 - D. The middle-sized pulley**

- 5. What is the total degree measure of the angles in a triangle?**
 - A. 90 degrees**
 - B. 180 degrees**
 - C. 270 degrees**
 - D. 360 degrees**

6. What happens to the rate of heat transfer when there is a greater temperature difference?

- A. It decreases.
- B. It remains the same.
- C. It increases.
- D. It becomes negligible.

7. What is the first step in the process of multiplying mixed numbers?

- A. Convert them to improper fractions
- B. Sum the whole numbers
- C. Multiply the whole numbers
- D. Find a common denominator

8. What is the typical altitude range for stratocumulus clouds?

- A. Above 18,000 feet
- B. Below 6,000 feet
- C. 6,000 to 20,000 feet
- D. From 20,000 to 30,000 feet

9. What process occurs in liquids and gases through circulating currents caused by density differences?

- A. Conduction
- B. Convection
- C. Radiation
- D. Insulation

10. In a two-pulley system, how far will the movable pulley rise compared to the fixed pulley?

- A. Equal distance
- B. Half the distance
- C. Double the distance
- D. One quarter the distance

Answers

SAMPLE

1. C
2. C
3. D
4. B
5. B
6. C
7. A
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What method is used to increase the effort of a lever arm?

- A. Increase the load's weight
- B. Decrease the length of the lever
- C. Increase the length and adjust pressure**
- D. Use a different material for the lever

The method of increasing the effort of a lever arm involves adjusting the length of the lever while also considering the pressure applied. By increasing the length of the lever arm, you effectively create a greater distance between the point of applied force and the fulcrum, which amplifies the torque or rotational force produced. This means that for the same amount of input effort, a longer lever can lift heavier loads or make it easier to move them. Adjusting the pressure or force applied in conjunction with this increased length can further enhance effectiveness. This concept is grounded in physics as described by the principle of levers. The lever amplifies the input force due to the mechanical advantage gained by adjusting the length of the lever arm, which is why this method is designed to increase the effort applied efficiently. In contrast, merely increasing the load's weight would require more effort to lift it without any mechanical advantage. Decreasing the length of the lever arm reduces the mechanical advantage and would make tasks harder since there would be less leverage. Changing the material of the lever may affect durability or resistance but does not inherently affect the effort involved in lifting or moving loads.

2. What is the primary function of a sextant in navigation?

- A. To measure time
- B. To determine speed
- C. To measure angles for celestial navigation**
- D. To calculate distance

The primary function of a sextant in navigation is to measure angles for celestial navigation. It is an instrument that allows navigators to determine their position by measuring the angle between a celestial body (like the sun or a star) and the horizon. This angular measurement is crucial for calculating latitude and longitude, which are essential for determining one's location at sea. By using a sextant, navigators can accurately pinpoint their position over vast distances of open water, which is essential for safe and effective maritime travel. The other options, while related to navigation, do not accurately describe the specific role of a sextant: measuring time, determining speed, and calculating distance rely on different instruments and methods.

3. What is the typical trace composition of air aside from nitrogen and oxygen?

- A. Only carbon dioxide
- B. Argon
- C. Hydrogen and other rare gases
- D. All of the above**

The typical trace composition of air includes a variety of gases, with nitrogen and oxygen making up the majority. Among the trace gases, argon is a significant component, typically found in concentrations of about 0.93% of the atmosphere. Carbon dioxide also plays a role, as it is present in much smaller amounts, approximately 0.04% but it has great importance due to its effect on climate and life processes, such as photosynthesis. Additionally, hydrogen and other rare gases (like neon, helium, krypton, and xenon) contribute to the overall trace composition. While these gases are found in even smaller amounts compared to carbon dioxide and argon, they are part of the overall mixture that constitutes atmospheric air. Thus, the inclusion of all these factors illustrates why all the mentioned gases - carbon dioxide, argon, hydrogen, and other rare gases - are considered when discussing the trace composition of air. This comprehensive view highlights the complexity of air's makeup and emphasizes the importance of understanding not just the primary components, but also those present in minor quantities.

4. In a pulley system, which pulley will turn faster?

- A. The largest pulley
- B. The smallest pulley**
- C. All pulleys turn at the same speed
- D. The middle-sized pulley

In a pulley system, the speed at which each pulley turns is inversely related to its size. This means that smaller pulleys will rotate faster than larger pulleys. When a rope wraps around a pulley, the distance covered by the rope per unit of time will be the same for all pulleys in a system. However, since the circumference of a pulley is greater for larger pulleys, they cover a greater distance with each revolution compared to smaller pulleys. Consequently, the smallest pulley must complete more revolutions in the same amount of time to move the same length of rope. Therefore, it will indeed turn faster than the larger pulleys in the system. This relationship holds true in a typical pulley arrangement where all pulleys are connected by the same rope.

5. What is the total degree measure of the angles in a triangle?

- A. 90 degrees**
- B. 180 degrees**
- C. 270 degrees**
- D. 360 degrees**

The total degree measure of the angles in a triangle is 180 degrees. This is a fundamental property of triangles in Euclidean geometry, which states that the sum of the interior angles will always equal 180 degrees, regardless of the type of triangle—whether it is scalene, isosceles, or equilateral. This property can be understood intuitively by considering that a triangle can be formed by connecting three points in a plane. If you were to draw a line extending from one of the triangle's vertices, you would create two angles that, along with the angle at that vertex, complete a straight line, which measures 180 degrees. Therefore, the total amount from all three angles of the triangle must also equal 180 degrees. Other options reflect the degrees associated with different geometric shapes or concepts. For example, 90 degrees is the measure of a right angle, while 270 degrees and 360 degrees relate to angles in circles, with 360 degrees representing the complete turn around a point. Thus, while they all have significance in geometry, they do not pertain to the angle measures of a triangle.

6. What happens to the rate of heat transfer when there is a greater temperature difference?

- A. It decreases.**
- B. It remains the same.**
- C. It increases.**
- D. It becomes negligible.**

The rate of heat transfer is directly related to the temperature difference between two objects or systems. This relationship is described by Fourier's law of heat conduction and Newton's law of cooling, among other principles in thermodynamics. When there is a greater temperature difference, the driving force for heat transfer increases, which means that heat will flow more readily from the hotter object to the cooler one. As the temperature difference increases, the rate at which thermal energy is transferred also rises. This is because the greater thermal gradient prompts a stronger flow of thermal energy, leading to an increase in heat transfer. For example, if you place a hot object next to a cold one, the larger the difference in their temperatures, the faster the heat moves from the hot to the cold object until they reach thermal equilibrium. Thus, when evaluating the impact of temperature difference on heat transfer rates, an increase in temperature difference will result in an increased rate of heat transfer. This understanding is crucial in various applications, from engineering designs involving heat exchangers to everyday scenarios like cooking or climate control.

7. What is the first step in the process of multiplying mixed numbers?

A. Convert them to improper fractions

B. Sum the whole numbers

C. Multiply the whole numbers

D. Find a common denominator

The first step in multiplying mixed numbers is to convert them to improper fractions. This is important because improper fractions are easier to work with when performing multiplication. A mixed number consists of a whole number and a fraction, and to accurately combine these components for multiplication, it is necessary to express the entire value as a single fraction. By converting a mixed number into an improper fraction, you ensure that the entire numerical value is represented correctly, which facilitates straightforward multiplication with other fractions. In this process, after converting each mixed number to an improper fraction, you can multiply the numerators together and the denominators together. This method preserves the value of the original mixed numbers and allows for precise calculations. After the multiplication, the resulting fraction can be converted back to a mixed number if necessary. Other options, such as summing the whole numbers or multiplying the whole numbers, do not provide the correct framework for handling mixed numbers as multiplication operations. Finding a common denominator is typically relevant in addition or subtraction of fractions rather than in multiplication. Thus, converting to improper fractions is essential for accurate computation when working with mixed numbers in multiplication.

8. What is the typical altitude range for stratocumulus clouds?

A. Above 18,000 feet

B. Below 6,000 feet

C. 6,000 to 20,000 feet

D. From 20,000 to 30,000 feet

Stratocumulus clouds typically form in the lower layers of the atmosphere, specifically at altitudes below 6,000 feet. These clouds are characterized by their lumpy appearance and usually cover the sky in a blanket-like layer. They are often found in stable weather conditions and can indicate overcast skies or periods of clearing. By understanding the altitude range for stratocumulus clouds, one can also identify the general weather patterns associated with them, which often include cool, calm conditions. Additionally, recognizing this altitude helps differentiate them from other types of clouds that have different formation criteria and altitude ranges.

9. What process occurs in liquids and gases through circulating currents caused by density differences?

- A. Conduction**
- B. Convection**
- C. Radiation**
- D. Insulation**

The process that occurs in liquids and gases through circulating currents caused by density differences is convection. This phenomenon takes place when warmer, less dense areas of a fluid rise while cooler, denser areas sink, creating a continuous circulation pattern. This movement allows heat to be transferred efficiently through the fluid. Convection is particularly relevant in various everyday scenarios, such as boiling water, atmospheric circulation, and ocean currents. In these situations, the heat causes a change in density, initiating the flow that characterizes convection. The transfer of heat by this method is distinct from conduction, where heat moves through direct contact between materials, and radiation, where heat is transferred through electromagnetic waves without the need for a medium. Insulation refers to preventing heat transfer, which is not related to the movement caused by density differences in fluids.

10. In a two-pulley system, how far will the movable pulley rise compared to the fixed pulley?

- A. Equal distance**
- B. Half the distance**
- C. Double the distance**
- D. One quarter the distance**

In a two-pulley system, particularly when dealing with a movable pulley, the relationship between the distance the movable pulley rises and the distance the rope is pulled is crucial to understand. When you pull down on the rope that goes over the fixed pulley, you effectively create a scenario where the length of rope on both sides of the movable pulley must be taken into account. As you pull down on the rope, the movable pulley will rise, but because the force applied to the system is effectively shared by two segments of rope (one on each side of the movable pulley), the distance that the pulley rises will be half of the distance that you have pulled the rope. For example, if you pull the rope down by one meter, the movable pulley will only rise by half a meter since both sections of the rope are supporting the load together. This principle reflects the mechanical advantage offered by the movable pulley, making it easier to lift an object but also resulting in the travel distance of the load being shorter in comparison to the distance the rope is pulled. Thus, the movable pulley rises half the distance compared to the displacement of the fixed pulley.