

NX Design Associate Certification Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. In NX, how do you identify the origin point of a part?**
 - A. By visual inspection of the part's geometry**
 - B. By defining it as the intersection of the primary planes in the part environment**
 - C. By using a specialized command to highlight it**
 - D. By setting user-defined coordinates**

- 2. Which one of these is not a type of hole you can create?**
 - A. Blind Hole**
 - B. Counterbore Hole**
 - C. External Threads**
 - D. Through Hole**

- 3. Which of the following statements is true when using Resize Chamfer on selected faces?**
 - A. Must have a variable width**
 - B. Can adjust width freely**
 - C. Must have a constant width**
 - D. Only works on edges**

- 4. Which tool in NX would you use to analyze structural integrity?**
 - A. Design Validation**
 - B. Finite Element Analysis**
 - C. Loft Creation**
 - D. Version Control**

- 5. What is one reason to use Visual Reporting in an assembly?**
 - A. To synchronize components**
 - B. To color-code the assembly to summarize a specific condition**
 - C. To automatically update part dimensions**
 - D. To eliminate unnecessary components**

6. Which of the following best describes an advantage of creating an edge blend feature instead of creating fillet curves inside a sketch?

- A. Can be edited, suppressed, or deleted without affecting the sketch**
- B. More accurate representation of the fillet in 3D**
- C. Immediate simulation of stress effects**
- D. Faster to create during the design phase**

7. Which of the following describes a G2 constraint?

- A. Objects are contiguous but not tangent**
- B. Objects are tangent and have the same radius of curvature at contact**
- C. Objects are parallel with a fixed distance apart**
- D. Objects have defined angles of intersection**

8. What command can be used to generate an internal volume solid?

- A. Delete Face**
- B. Generate Body**
- C. Create Interior Solid**
- D. Combine Solids**

9. What will happen when you edit a spline defined Through Points to a spline defined By Poles?

- A. The defining data will be retained**
- B. The defining data will be lost**
- C. The spline curvature will flatten**
- D. The spline will re-assign its original points**

10. What Synchronous Modeling command creates a new sketch of curves on the intersected faces of a solid body?

- A. Edit Cross Section**
- B. Curvature Sketch**
- C. Face Sketch**
- D. Intersect Geometry**

Answers

SAMPLE

1. B
2. C
3. C
4. B
5. B
6. A
7. B
8. C
9. B
10. A

SAMPLE

Explanations

SAMPLE

1. In NX, how do you identify the origin point of a part?

- A. By visual inspection of the part's geometry
- B. By defining it as the intersection of the primary planes in the part environment**
- C. By using a specialized command to highlight it
- D. By setting user-defined coordinates

The origin point of a part in NX is determined by the intersection of the primary planes in the part environment. These primary planes—typically the XY, YZ, and XZ planes—serve as fundamental reference points for establishing the part's coordinate system. The origin is located at the intersection of these planes, providing a consistent and universally understood location from which all geometry can be defined and measured. This method ensures accuracy and alignment within the design environment, enabling users to precisely create and manipulate the part's geometry based on this reference point. In contrast, relying solely on visual inspection may not provide the precision needed for complex designs, as it can be subjective and may lead to inconsistencies. The option of using a specialized command to highlight the origin may offer some assistance but does not inherently define the origin; rather, it helps in visualizing it. Setting user-defined coordinates can result in a custom origin that does not adhere to the standard intersection of primary planes, which could lead to complications in understanding and working within the overall design context. Therefore, using the established intersection point of the primary planes is the most effective and standardized way to identify the origin of a part in NX.

2. Which one of these is not a type of hole you can create?

- A. Blind Hole
- B. Counterbore Hole
- C. External Threads**
- D. Through Hole

The option that does not represent a type of hole is external threads. In the context of hole types, blind holes, counterbore holes, and through holes refer specifically to the different methods and characteristics of creating openings in materials. A blind hole is one that does not go all the way through the material, having a bottom surface, whereas a through hole extends from one side of the material to the other, creating an opening that fully penetrates the workpiece. A counterbore hole is characterized by its cylindrical recess that allows the head of a fastener to sit below the surface of the material. On the other hand, external threads refer to the feature on the outer surface of a cylindrical object, such as a bolt or screw, but they do not describe a type of hole. Instead, they involve the formation of a helical ridge around the cylinder which allows it to be fastened into a corresponding internally threaded hole. Thus, while external threads play a crucial role in fastening applications, they do not fit into the category of hole types.

3. Which of the following statements is true when using Resize Chamfer on selected faces?

- A. Must have a variable width**
- B. Can adjust width freely**
- C. Must have a constant width**
- D. Only works on edges**

When using the Resize Chamfer tool on selected faces in NX, the statement regarding the necessity of a constant width is accurate. The Resize Chamfer feature is designed to create chamfered edges that uniformly adjust the angle and width along the selected edges. By definition, a constant width chamfer maintains a single, uniform dimension across the entire edge or face, ensuring consistency in design and functionality. Unlike options suggesting varying widths or adjustments that can be made freely, constant width is a defining characteristic of this specific chamfer type. It provides a straightforward design approach, ensuring that the modification applied to the geometry does not lead to complexity in manufacturing or usability. While resizing allows for changes in dimensions, the fundamental property remains that the chamfer will maintain a consistent width across the selected face. In summary, the aspect of requiring a constant width is key to the functionality of the Resize Chamfer tool, distinguishing it from other types of chamfers that can incorporate variations in width or work on different geometrical forms.

4. Which tool in NX would you use to analyze structural integrity?

- A. Design Validation**
- B. Finite Element Analysis**
- C. Loft Creation**
- D. Version Control**

Finite Element Analysis (FEA) is a crucial tool in NX for assessing the structural integrity of components and assemblies. FEA allows engineers to simulate and analyze how structures respond to various loading conditions, such as forces, pressure, temperature, and other external factors. By breaking down complex geometries into smaller, manageable elements, it provides a detailed insight into stress distribution, displacement, and potential failure points within the material. Using FEA, designers can predict performance and optimize designs before physical prototypes are created, thereby reducing costs and development time. This method is particularly advantageous for evaluating materials under various conditions, ensuring that the design meets safety and performance standards. In contrast, Design Validation focuses more on ensuring that the design meets specified requirements rather than structural analysis; Loft Creation is primarily used for creating complex shapes and surfaces; and Version Control pertains to the management of design file revisions and collaboration rather than structural performance analysis.

5. What is one reason to use Visual Reporting in an assembly?

- A. To synchronize components
- B. To color-code the assembly to summarize a specific condition**
- C. To automatically update part dimensions
- D. To eliminate unnecessary components

Using Visual Reporting in an assembly allows for the color-coding of components to visually summarize specific conditions or attributes. This feature enhances the clarity and organization of complex assemblies, making it easier for designers and engineers to quickly identify components that meet certain criteria, are at risk, or have specific characteristics. For instance, color-coding can be used to indicate which parts are under constrained conditions or which ones might need attention, thereby facilitating effective management of the assembly process. The other options do not directly relate to the primary function of Visual Reporting. For example, synchronizing components involves aligning their movements or behaviors rather than summarizing data visually, while automatically updating part dimensions pertains more to design parameters than reporting visibility. Additionally, eliminating unnecessary components relates to optimizing the assembly's design rather than visually representing or summarizing data conditions.

6. Which of the following best describes an advantage of creating an edge blend feature instead of creating fillet curves inside a sketch?

- A. Can be edited, suppressed, or deleted without affecting the sketch**
- B. More accurate representation of the fillet in 3D
- C. Immediate simulation of stress effects
- D. Faster to create during the design phase

Creating an edge blend feature offers the advantage of being able to edit, suppress, or delete it without affecting the underlying sketch, which is a significant benefit in the design process. When edge blends are applied, they are separate features that can be adjusted independently of the sketch from which the part was derived. This flexibility allows designers to modify the geometry and refine the design without having to manage changes to the sketch itself. In contrast, if fillet curves are created inside a sketch, any modifications to these curves could potentially lead to geometric changes or even errors that might propagate through the design. This can complicate the design workflow, especially when there are multiple dependencies tied to those sketch elements. By using edge blends, designers maintain better control over the model, enabling easier adjustments as design requirements change. While there may be advantages related to accuracy or efficiency in certain scenarios, the primary strength of using edge blends lies in their independence and ease of modification, ensuring a more streamlined design experience.

7. Which of the following describes a G2 constraint?

- A. Objects are contiguous but not tangent
- B. Objects are tangent and have the same radius of curvature at contact**
- C. Objects are parallel with a fixed distance apart
- D. Objects have defined angles of intersection

A G2 constraint is specifically related to the geometric relationship between curves, particularly in the context of their tangential properties. When G2 is applied, it indicates that two curves not only touch each other but also have the same radius of curvature at the point of tangency, meaning they are smooth at that contact point. This relationship ensures that the curves flow together seamlessly without any abrupt changes in direction or curvature, which is critical in design scenarios where aesthetic and functional continuity is essential, such as in automotive or product design. In contrast, the other answers describe different types of geometric relationships that do not match the criteria for a G2 constraint. For example, stating that objects are contiguous but not tangent does not satisfy the tangential requirement. Describing objects as parallel with a fixed distance apart indicates a linear relationship, which is not relevant to curvature. Lastly, defined angles of intersection relate to angular constraints rather than curvature. Therefore, the focus on tangency and equal curvature in the correct answer encapsulates the essence of a G2 constraint in geometrical relationships.

8. What command can be used to generate an internal volume solid?

- A. Delete Face
- B. Generate Body
- C. Create Interior Solid**
- D. Combine Solids

The command "Create Interior Solid" is specifically designed for generating internal volume solids in CAD software like NX. This command allows you to define a solid shape that occupies the space enclosed by existing surfaces or regions, which is essential in various design scenarios, especially when modeling complex parts that require consideration of internal volumes. Using "Create Interior Solid," designers can efficiently create a solid representation of the volume inside a model without having to manually define or extrude from original features. This is particularly useful for applications in engineering where understanding the internal structure of a part is crucial for strength, flow analysis, or material distribution. The other options do not serve the purpose of creating internal volume solids in the same way. "Delete Face," for instance, is aimed at modifying surfaces by removing selected faces but does not contribute to volume creation. "Generate Body" may refer to creating a new solid based on selected parameters but lacks the specificity of creating internal volumes, while "Combine Solids" focuses on merging existing solids into a single entity rather than generating new internal solid volumes. This distinction makes "Create Interior Solid" the appropriate choice for producing internal volume solids.

9. What will happen when you edit a spline defined Through Points to a spline defined By Poles?

- A. The defining data will be retained
- B. The defining data will be lost**
- C. The spline curvature will flatten
- D. The spline will re-assign its original points

When converting a spline defined Through Points to one defined By Poles, the defining data associated with the original spline configuration will not carry over. This is because splines defined By Poles use control points to dictate the shape of the spline rather than specific points that the spline must pass through. In this transformation, the precise influence of each individual point is modified, which leads to a loss of the original data that specified the exact path of the spline. Essentially, while the control points will dictate the new form, the direct constraints of the previously defined spline through those points are no longer applied, resulting in the loss of that defining data. Understanding how spline definitions work is critical for effective modeling in CAD software—especially in applications like NX where design intention can dictate a lot about the resulting geometry.

10. What Synchronous Modeling command creates a new sketch of curves on the intersected faces of a solid body?

- A. Edit Cross Section**
- B. Curvature Sketch
- C. Face Sketch
- D. Intersect Geometry

The command that creates a new sketch of curves on the intersected faces of a solid body is known as the "Edit Cross Section" command. This command allows users to generate a 2D representation of the intersection between the selected faces of a solid model. It essentially creates a cross-section view that captures the contours and outlines of the geometry, which can then be utilized for further modeling or design purposes. When using the Edit Cross Section command, the software takes into account the geometry of the solid body and the position of the intersecting planes or surfaces. The resulting curves from this command can be very useful for tasks such as extracting profiles for use in additional sketches or designs, making it an essential tool in the Synchronous Modeling environment. In contrast, the other options may serve different purposes or functions within the modeling process. For instance, the Curvature Sketch command focuses on creating sketches based on curvature rather than directly interacting with intersected surfaces. The Face Sketch command allows for sketching directly on a face but does not specifically derive a sketch from an intersection. Intersect Geometry is typically used to create new geometry based on the intersecting features rather than creating sketches, which further distinguishes its function from the Edit Cross Section command.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://nxdesignassociate.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE