# Northeastern Apprenticeship and Training (NEAT) 1-6 Practice Test Practice Test (Sample)

Study Guide



Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

#### ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.



#### **Questions**



- 1. What type of feed enhances faulted cable isolation and service restoration in underground systems?
  - A. Radial
  - B. Branch
  - C. Loop
  - D. Direct
- 2. What is the primary responsibility of employers regarding lockout/tagout procedures?
  - A. To ensure compliance with federal regulations
  - B. To develop procedures unique to the equipment and circuits
  - C. To provide training for all employees
  - D. To implement daily checks of safety equipment
- 3. Where is most of the resistance located in a jumper assembly?
  - A. At the midsection of a jumper
  - B. At the connection points within the assembly
  - C. At the cable insulation
  - D. In the ferrule connections
- 4. What is the typical warmup procedure for a hydraulic system?
  - A. 300 rpm for 5 minutes
  - B. 600 rpm for 10 minutes
  - C. 1000 rpm for 15 minutes
  - D. 600 rpm (1000 rpm for diesel) for 10 minutes
- 5. According to bonding principles, how must bonds be installed for the safety of workers?
  - A. To create grounding loops
  - B. So that a worker is kept in a Equipotential Zone
  - C. To enhance electrical reliability
  - D. To minimize electrical losses

- 6. What is the maximum voltage that a neutral potential should not exceed?
  - A. 5 volts
  - B. 10 volts
  - C. 15 volts
  - D. 20 volts
- 7. Which types of cables use concentric round, compact round, and annular designs?
  - A. Multi-conductor cables
  - **B. Single conductor cables**
  - C. High voltage cables
  - D. Low voltage cables
- 8. In terms of electric cables, what is the role of insulation shielding?
  - A. To enhance the speed of electrical flow
  - B. To increase the thermal capacity
  - C. To prevent interference and assure safety
  - D. To reduce weight
- 9. What should exposed conductive guards or conduits containing supply conductors always be?
  - A. Insulated
  - **B.** Exposed
  - C. Grounded
  - D. Painted
- 10. What type of cable pattern is generally used on multiconductor cables?
  - A. Segmental
  - B. Sector shape
  - C. Coaxial
  - D. Concentric

#### **Answers**



- 1. C 2. B

- 2. B 3. B 4. D 5. B 6. B 7. B 8. C 9. C 10. B



#### **Explanations**



- 1. What type of feed enhances faulted cable isolation and service restoration in underground systems?
  - A. Radial
  - B. Branch
  - C. Loop
  - D. Direct

The type of feed that enhances faulted cable isolation and service restoration in underground systems is a loop configuration. In a loop feed system, two or more paths can supply power to a location, allowing for greater flexibility in managing power flow. If a fault occurs on one segment of the loop, the system can quickly isolate the issue, reducing the impact on customers and enabling quicker restoration of service. The loop design also allows for automatic or manual switching to alternative paths, which can maintain service to unaffected areas while repairs are made. This method is particularly advantageous in underground systems where access can be limited, as it fosters resiliency in the network, ensuring that service interruptions are minimized. In comparison, other configurations might not provide the same level of redundancy and service continuity during a fault. For instance, radial feeds typically only have one path for power delivery and might lead to larger outages when faults occur, while branch and direct feeds do not inherently offer the same isolation and restoration benefits as loops do.

- 2. What is the primary responsibility of employers regarding lockout/tagout procedures?
  - A. To ensure compliance with federal regulations
  - B. To develop procedures unique to the equipment and circuits
  - C. To provide training for all employees
  - D. To implement daily checks of safety equipment

The primary responsibility of employers regarding lockout/tagout procedures is to develop procedures unique to the equipment and circuits. This is essential because each piece of machinery or electrical equipment can have different operational characteristics, hazards, and shutdown procedures. By creating customized lockout/tagout procedures, employers ensure that they address the specific risks associated with their equipment, thereby protecting employees from accidental energization or release of hazardous energy during maintenance and servicing tasks. While compliance with federal regulations is important and providing training for employees is crucial for safety awareness, the heart of effective lockout/tagout practices lies in the tailored procedures that specifically govern the safe operation of the equipment used in the workplace. Daily checks of safety equipment are also necessary to ensure everything is functioning correctly but are not the primary responsibility concerning lockout/tagout procedures. Therefore, developing unique procedures is the most critical aspect of ensuring workplace safety in this context.

## 3. Where is most of the resistance located in a jumper assembly?

- A. At the midsection of a jumper
- B. At the connection points within the assembly
- C. At the cable insulation
- D. In the ferrule connections

The correct choice indicates that most of the resistance in a jumper assembly is found at the connection points within the assembly. This is due to the fact that electrical connections can introduce variable resistance due to factors such as contact quality, material properties, and the physical state of the connection. Poor contacts, oxidation, or dirt can all contribute to increased resistance, making this area critical in the overall performance of the jumper assembly. The other areas mentioned, while they might contribute to resistance to a lesser extent, do not have the same impact as the connection points. For instance, the midsection of a jumper tends to exhibit lower resistance as it is typically a continuous piece of conductive material. Cable insulation does not contribute to resistance in the same way since its primary function is to prevent electrical leakage and protect the conductors. Ferrule connections can also be points of potential resistance, but they are often designed to be secure and conductive, making their contribution less significant than that of the main connection points. Thus, the emphasis on connection points is key in understanding where most resistance occurs in a jumper assembly.

- 4. What is the typical warmup procedure for a hydraulic system?
  - A. 300 rpm for 5 minutes
  - B. 600 rpm for 10 minutes
  - C. 1000 rpm for 15 minutes
  - D. 600 rpm (1000 rpm for diesel) for 10 minutes

The typical warmup procedure for a hydraulic system involves gradually increasing the operating speed to allow the system's components to properly circulate oil and reach optimal operating temperatures. The correct procedure, which recommends running the system at 600 rpm for 10 minutes, ensures that the hydraulic fluid is adequately warmed up and that the components are lubricated effectively. Additionally, the option specifies that for diesel engines, a higher warm-up speed of 1000 rpm can be used, which recognizes the differences in engine requirements based on fuel type. This approach reduces wear and tear on the system, optimizes performance, and helps prevent potential failures due to cold operation. The careful management of RPM during warm-up minimizes the risk of hydraulic shock or stress on system components, ensuring longevity and reliable operation. The other options, while they suggest varying speeds and durations, do not align with the standard practice that balances efficiency in heating the system with the need for component safety and longevity.

# 5. According to bonding principles, how must bonds be installed for the safety of workers?

- A. To create grounding loops
- B. So that a worker is kept in a Equipotential Zone
- C. To enhance electrical reliability
- D. To minimize electrical losses

The requirement that bonds be installed to keep a worker in an Equipotential Zone is crucial for worker safety, particularly in preventing electric shock hazards. An Equipotential Zone is an area where the electrical potential is uniform, which minimizes the risk of electric shock if a person were to come into contact with different conductive materials that might have varying potentials. By ensuring that all conductive parts are bonded together within this zone, any potential differences are eliminated, allowing a worker to be safe while performing their tasks. This practice is a key component of electrical safety protocols and is especially important in areas where the risk of coming into contact with electrical systems or components is high. Other options, while relevant in their own contexts, do not prioritize the immediate safety of workers in the same way. For example, enhancing electrical reliability and minimizing electrical losses are important for system performance but do not address worker safety directly. Creating grounding loops, though beneficial for certain electrical systems, does not specifically ensure that a worker remains safe from electric shock hazards. Therefore, maintaining an Equipotential Zone is the most critical consideration when bonding is installed for worker protection.

#### 6. What is the maximum voltage that a neutral potential should not exceed?

- A. 5 volts
- **B. 10 volts**
- C. 15 volts
- D. 20 volts

The maximum voltage that a neutral potential should not exceed is often set at 10 volts. This standard is crucial because exceeding this voltage can present safety risks and potential electrical shock hazards. In electrical systems, especially in residential and commercial buildings, the neutral wire is intended to carry current back to the source and is typically at or near ground potential. When the voltage on the neutral exceeds the acceptable level, it can indicate a problem such as improper bonding or grounding, leading to voltage imbalances that could be dangerous. Maintaining the neutral voltage at or below 10 volts helps ensure the safety and reliability of electrical systems, minimizing risk of electrical shock to individuals and preventing potential equipment damage. This threshold is a common guideline in many electrical codes and standards to protect both people and property.

## 7. Which types of cables use concentric round, compact round, and annular designs?

- A. Multi-conductor cables
- **B. Single conductor cables**
- C. High voltage cables
- D. Low voltage cables

The correct answer is connected to the design features of single conductor cables. Single conductor cables are often designed with concentric round, compact round, and annular designs to enhance their electrical performance and physical characteristics. These designs help to reduce electrical interference and improve the efficiency of power transmission. Concentric designs allow for multiple layers of conductive material surrounding a central core, which can help minimize electromagnetic interference and improve grounding. Compact round designs can provide mechanical strength while maintaining flexibility, making them suitable for various applications. Annular designs, while similar, focus on the arrangement of the conductors to optimize electrical properties and reduce losses. The focus on these specific designs is essential for single conductor applications, where the properties of conductivity and shielding are critical to successful functionality, especially in industrial or high-demand situations.

# 8. In terms of electric cables, what is the role of insulation shielding?

- A. To enhance the speed of electrical flow
- B. To increase the thermal capacity
- C. To prevent interference and assure safety
- D. To reduce weight

Insulation shielding serves a crucial role in electric cables primarily by preventing interference and ensuring safety. This type of shielding protects the conductors within the cable from external electromagnetic interference (EMI) that could disrupt communication signals or power transmission. By providing a barrier against such interference, insulation shielding helps maintain the integrity and reliability of electrical and data signals. Additionally, insulation shielding is essential for safety. It prevents accidental contact with live wires, reducing the risk of electrical shocks and short circuits. This protective layer can also reduce heat build-up, contributing to the overall safety of electrical installations. The other options do not accurately reflect the primary function of insulation shielding. While enhancing speed of electrical flow and increasing thermal capacity are related to wire design and materials used, they are not main benefits of insulation shielding. Similarly, reducing weight may be a factor in specific cable designs, but it is not the main purpose of insulation shielding.

# 9. What should exposed conductive guards or conduits containing supply conductors always be?

- A. Insulated
- **B.** Exposed
- C. Grounded
- D. Painted

Exposed conductive guards or conduits that contain supply conductors should always be grounded to ensure safety and prevent electrical shock hazards. Grounding provides a path for electrical current to flow safely to the ground in case of a fault or insulation failure, thus protecting individuals and equipment from electric shock. By grounding these components, any leakage current is directed away from personnel and equipment, reducing the risk of serious electrical incidents. Insulation is important for certain applications, but it does not provide the same level of protection as grounding does in the context of exposed conductive materials. Painting does not contribute to electrical safety in this scenario, and leaving conductive guards or conduits exposed would create an unsafe environment. Therefore, grounding is essential for exposed conductive guards or conduits that contain supply conductors.

## 10. What type of cable pattern is generally used on multiconductor cables?

- A. Segmental
- **B.** Sector shape
- C. Coaxial
- D. Concentric

The correct answer, which identifies the cable pattern typically used in multiconductor cables as sector shape, is significant because it reflects the design requirements for effectively managing the numerous conductors within the cable. The sector shape allows for efficient use of space, minimizing the amount of insulation needed while maintaining a robust and reliable structure. This configuration ensures that the individual conductors are properly organized, improving both performance and manufacturability. The sector shape pattern enhances the electrical characteristics of the cable as it helps reduce the interference between conductors, which is crucial for maintaining signal integrity. Moreover, this design facilitates better heat dissipation, which is important for maintaining safe operating temperatures when the multiconductor cable is in use. In contrast, segmental patterns are generally more suitable for specific configurations rather than utilizing multiple conductors. Coaxial cables, although effective for certain applications, do not apply to multiconductor arrangements as effectively since they primarily consist of a central conductor surrounded by a dielectric insulator and an outer conductor, typically used for RF signals. Concentric patterns, while effective in some contexts, mostly refer to designs used for specific types of power cables rather than the organization of multiple conductors as found in multiconductor cables.