NETA ETT Certified Assistant Level 3 Certification Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What is the "Can't Let Go" range of current flow?
 - A. 1-5 mA
 - B. 5-10 mA
 - C. 9-25 mA
 - D. 25-50 mA
- 2. Which voltage level classifies a capacitor as "high voltage" in context with discharging requirements?
 - **A. Over 800V**
 - B. Up to 1,000V
 - C. Over 1,000V
 - D. Below 500V
- 3. What action level should be applied to a Delta T of 15°C between component and ambient air?
 - A. Immediate repair is necessary
 - B. Monitor the temperature closely
 - C. Repair as time permits
 - D. Consider replacing the component
- 4. Which type of fuse is typically used where a high interrupting capacity is necessary?
 - A. Ceramic fuses
 - **B. Silver-sand fuses**
 - C. Glass fuses
 - **D.** Polymer fuses
- 5. What is the function of the anti-pump feature in a circuit breaker?
 - A. Prevents the breaker from operating continuously
 - B. Increases the closing speed of the breaker
 - C. Allows multiple closings with one action
 - D. Ensures breaker opens and closes once per operation

- 6. What is the primary purpose of fittings on conduit ends when cables enter or exit for protection against physical damage?
 - A. To support electrical insulation
 - B. To prevent mechanical stress
 - C. To reduce abrasion
 - D. To enhance grounding
- 7. Resistance in a circuit will delay the charging time of a capacitor. Is this statement true or false?
 - A. True
 - **B.** False
 - C. Sometimes true
 - D. Only if voltage is high
- 8. When motors are designed to operate at two voltage levels, how are windings connected for the lower voltage?
 - A. Series
 - B. Parallel
 - C. In series-parallel combination
 - D. Independently
- 9. Which ANSI/IEEE standard addresses SF6 circuit breakers?
 - A. C37.10
 - B. C37.04
 - C. C37.20
 - D. C37.30
- 10. Which class surge arrester is ideal for economic and reliable protection of medium voltage electrical power equipment?
 - A. Class A
 - B. Class B
 - C. Distribution class
 - D. Class C

Answers

- 1. C 2. B 3. C 4. B 5. D 6. C 7. A 8. B 9. B 10. C

Explanations

- 1. What is the "Can't Let Go" range of current flow?
 - A. 1-5 mA
 - B. 5-10 mA
 - C. 9-25 mA
 - D. 25-50 mA

The "Can't Let Go" range refers to a specific range of electrical current flow that can lead to a sustained muscular contraction, making it difficult for a person to release grip on an object or release their hold in the presence of a dangerous electrical current. This range is recognized as generally spanning from 9 to 25 mA. Currents within this range can significantly impact a person's neuromuscular function, causing involuntary muscle contractions. Understanding this range is vital for safety and risk assessment in electrical work, as being exposed to such currents can lead to serious injury or even fatalities due to prolonged muscle contractions or inability to let go when under electrical strain. Choosing the correct range of current flow is crucial for those working with or around electricity and illustrates the importance of safety standards and awareness in these environments.

- 2. Which voltage level classifies a capacitor as "high voltage" in context with discharging requirements?
 - **A. Over 800V**
 - B. Up to 1,000V
 - C. Over 1,000V
 - D. Below 500V

A capacitor is classified as "high voltage" based on specific voltage thresholds that dictate the safety protocols and discharging requirements necessary for handling such equipment. The classification as high voltage generally starts at 1,000 volts. Therefore, for industry standards and safety practices, a capacitor that operates at or above this level is considered to be high voltage and has specific discharging protocols to ensure safety when handling or servicing this type of equipment. In this context, capacitors rated at 1,000 volts are recognized for requiring careful discharging due to the potential risk of electric shock or damage if improperly handled. Capacitors rated below this level do not fall into the high voltage category and usually involve less stringent safety measures when discharging is required. Hence, the accurate classification for a capacitor as "high voltage" aligns with the threshold of up to 1,000 volts.

- 3. What action level should be applied to a Delta T of 15°C between component and ambient air?
 - A. Immediate repair is necessary
 - B. Monitor the temperature closely
 - C. Repair as time permits
 - D. Consider replacing the component

The appropriate action level for a Delta T of 15°C between a component and the ambient air indicates that the temperature difference is significant enough to warrant attention, but it may not require immediate intervention. Repairing as time permits suggests a proactive approach to maintenance without the urgency that would be necessary for more extreme temperature differentials. This approach allows for planned scheduling of repairs or maintenance activities, ensuring that resources can be allocated effectively while minimizing downtime and focusing on safety and operational efficiency. A Delta T of 15°C can indicate potential issues with the component that might lead to inefficiencies or long-term damage if left unaddressed, which is why it's deemed important to repair it at some point. In contrast, immediate repairs might be reserved for situations where the equipment is at risk of failure or poses a safety hazard, while monitoring or considering replacement would apply to different contexts or lower priority cases.

- 4. Which type of fuse is typically used where a high interrupting capacity is necessary?
 - A. Ceramic fuses
 - **B. Silver-sand fuses**
 - C. Glass fuses
 - D. Polymer fuses

Silver-sand fuses are specifically designed for high interrupting capacity applications, making them the appropriate choice in situations where the potential for high fault currents exists. These fuses contain a mixture of silver and sand, which acts as an effective medium to extinguish the arc that forms when the fuse elements melt due to an overload or short circuit. The unique composition enables them to handle and interrupt larger amounts of electrical current safely and efficiently. In contrast, ceramic fuses, glass fuses, and polymer fuses are generally not designed to manage the same high interrupting capacities as silver-sand fuses. Ceramic fuses are durable and can withstand high temperatures, but they are better suited for lower interrupting capacity applications. Glass fuses offer visual indication of a blown fuse but are typically limited in their interrupting capabilities. Polymer fuses may provide durability and resistance to certain environmental factors, yet they also do not match the interrupting capacity that silver-sand fuses can offer in high fault situations.

- 5. What is the function of the anti-pump feature in a circuit breaker?
 - A. Prevents the breaker from operating continuously
 - B. Increases the closing speed of the breaker
 - C. Allows multiple closings with one action
 - D. Ensures breaker opens and closes once per operation

The function of the anti-pump feature in a circuit breaker is to ensure that the breaker opens and closes only once per operation. This mechanism is vital for maintaining safe and stable electrical operations, as it prevents the circuit breaker from unintentionally cycling on and off due to inadvertent signals or conditions that might cause a "pumping" effect. When a user or automated system attempts to close the breaker, the anti-pump feature prevents any further closing actions until a deliberate reset is performed. This is especially important in protecting equipment and ensuring safe operation during fault conditions, as it mitigates the risk of creating a situation where the breaker rapidly opens and closes, which could potentially lead to excessive wear or damage to both the breaker and the connected electrical components. The other options do not accurately reflect the anti-pump feature's purpose. For example, while preventing continuous operation can be associated with various protective features, the primary function of the anti-pump is distinctly about restricting multiple operations from occurring due to a single action.

- 6. What is the primary purpose of fittings on conduit ends when cables enter or exit for protection against physical damage?
 - A. To support electrical insulation
 - B. To prevent mechanical stress
 - C. To reduce abrasion
 - D. To enhance grounding

The primary purpose of fittings on conduit ends when cables enter or exit is to reduce abrasion. When cables pass through conduit, any rough edges or openings can create points of wear on the cable insulation. Fittings are designed to provide a smooth, protective barrier that shields the cables from potential damage caused by friction or contact with sharp edges. This protective aspect is particularly important in environments where cables may be subjected to constant movement or where they are in close proximity to other materials that might cause wear. While there are other considerations regarding conduit fittings—such as supporting electrical insulation, preventing mechanical stress, and enhancing grounding—the main focus in this context is the prevention of abrasion. By ensuring that cables are not exposed to any surfaces that could compromise their integrity, fittings play a crucial role in maintaining the overall safety and longevity of electrical installations.

- 7. Resistance in a circuit will delay the charging time of a capacitor. Is this statement true or false?
 - A. True
 - **B.** False
 - C. Sometimes true
 - D. Only if voltage is high

The statement that resistance in a circuit will delay the charging time of a capacitor is true. This is based on the fundamental principles of how capacitors charge in a resistive circuit. When a voltage is applied to a capacitor through a resistor, the charging process is not instant. The time it takes for the capacitor to reach a certain voltage level is influenced by both the resistance and the capacitance in the circuit. This relationship is governed by the time constant, which is calculated as the product of resistance (R) and capacitance (C), often denoted as τ (tau). The time constant determines how quickly the voltage across the capacitor rises to about 63% of the supply voltage during the charging phase. A higher resistance increases the time constant, thereby slowing the charging process. In contrast, a lower resistance allows the capacitor to charge more quickly. Therefore, the presence of resistance in the circuit directly affects the time it takes for the capacitor to charge, validating the statement as true.

- 8. When motors are designed to operate at two voltage levels, how are windings connected for the lower voltage?
 - A. Series
 - **B.** Parallel
 - C. In series-parallel combination
 - D. Independently

When motors are designed to operate at two different voltage levels, the windings for the lower voltage configuration are connected in parallel. This allows the motor to draw more current while still providing the necessary voltage for operation. When two windings are connected in parallel, the voltage across both windings remains the same, but the total current capacity of the motor is increased because it can draw from both windings simultaneously. Operating the motor in this configuration at a lower voltage allows it to maintain its performance characteristics while accommodating the electrical requirements dictated by the lower voltage supply. In contrast, connecting windings in series would lead to a higher total voltage drop across the windings and is more suitable for higher voltage applications. The other configurations—series-parallel combination and independent connection—do not provide the necessary characteristics for lower voltage operation. Therefore, the parallel connection best aligns with the principles of motor design for multi-voltage applications.

9. Which ANSI/IEEE standard addresses SF6 circuit breakers?

- A. C37.10
- **B.** C37.04
- C. C37.20
- D. C37.30

The ANSI/IEEE standard that addresses SF6 circuit breakers is C37.04. This standard specifically outlines the general requirements and test methods for circuit breakers, including those that use sulfur hexafluoride (SF6) as an insulating and quenching medium. SF6 circuit breakers are known for their excellent insulation properties and their ability to interrupt current in a compact design, making this standard crucial for ensuring the safe and reliable use of these devices in electrical systems. This standard provides guidance on the performance testing and operational characteristics necessary for certification, thereby ensuring that manufacturers meet specific reliability and safety metrics associated with SF6 technology. Understanding this standard is important for professionals involved in the design, testing, and maintenance of circuit breakers to ensure compliance and effective operation within electrical infrastructures.

10. Which class surge arrester is ideal for economic and reliable protection of medium voltage electrical power equipment?

- A. Class A
- B. Class B
- C. Distribution class
- D. Class C

The distribution class surge arrester is recognized as the ideal choice for providing both economic and reliable protection of medium voltage electrical power equipment. This classification is specifically designed to handle the protection needs of distribution systems, which often involve medium voltage applications. They are optimized to limit the voltage exposure of electrical equipment during surges, while also being cost-effective due to their design that balances performance with expense. These surge arresters are tailored to withstand the operational demands and environmental conditions commonly encountered in distribution networks. They ensure that sensitive equipment is safeguarded against transient overvoltages caused by activities such as lightning strikes or switching operations. The reliability of distribution class surge arresters makes them a favored option among utility companies and electrical engineers, allowing for enhanced system longevity and reduced maintenance costs. In contrast, the other classifications serve different purposes. For example, Class A and Class B arresters are primarily intended for high voltage applications and may not offer the same level of economic efficiency for medium voltage systems. Class C surge arresters, while still effective, might not provide the necessary protection levels that distribution class units specialize in for medium voltage scenarios.