

NETA ETT Certified Assistant Level 2 Certification Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the AC retest voltage for Class 2 rubber gloves?**
 - A. 10,000 VAC**
 - B. 20,000 VAC**
 - C. 30,000 VAC**
 - D. 40,000 VAC**
- 2. What equipment is commonly used to measure winding resistance?**
 - A. Oscilloscope**
 - B. Multimeter**
 - C. Kelvin bridge**
 - D. Power analyzer**
- 3. According to UL Standard 891, which defines the standards for equipment?**
 - A. Voltage rating**
 - B. Short circuit withstand rating**
 - C. Interrupting rating**
 - D. Ampere rating**
- 4. What is the primary focus of ANSI?**
 - A. Setting safety standards**
 - B. Developing electrical regulations**
 - C. National standards development**
 - D. Industrial testing standards**
- 5. After performing a winding-resistance test on a dry-type transformer, what is acceptable per NETA standards if the temperature corrected values do not compare within two percent of previously obtained results?**
 - A. Yes**
 - B. No**
 - C. Depends on the age of the transformer**
 - D. Always requires a follow-up test**

6. What must voltage detectors have to ensure safety?

- A. Measurement category for the job**
- B. Personal protective equipment**
- C. Backup power supply**
- D. Calibration certificate**

7. In a three-phase, squirrel-cage induction motor, where is the field located?

- A. In the stator**
- B. In the rotor**
- C. In the winding**
- D. In the power source**

8. What is the minimum operating time of a Buchholz relay?

- A. 0.05 seconds**
- B. 0.1 seconds**
- C. 0.2 seconds**
- D. 1.0 seconds**

9. What does ANSI represent?

- A. American National Standards Institute**
- B. American National Society for Initiatives**
- C. American National Standards Integration**
- D. American National Standards Index**

10. What is defined as the arc flash boundary?

- A. The distance from which personnel can view work being done**
- B. The distance at which the incident energy equals 1.2 cal/cm²**
- C. The distance from live parts where grounded tools can be used**
- D. The distance where equipment must be turned off**

Answers

SAMPLE

1. B
2. C
3. B
4. C
5. B
6. A
7. B
8. B
9. A
10. B

SAMPLE

Explanations

SAMPLE

1. What is the AC retest voltage for Class 2 rubber gloves?

- A. 10,000 VAC
- B. 20,000 VAC**
- C. 30,000 VAC
- D. 40,000 VAC

The AC retest voltage for Class 2 rubber gloves is 20,000 VAC. This value is established to ensure that the gloves provide adequate protection against electrical shock when tested under controlled conditions. Class 2 rubber gloves are specifically designed for use in electrical applications where the voltage is typically up to 17,000 volts, and the retest voltage is set higher to ensure the gloves remain effective and safe for use in those environments. The testing process serves to validate the integrity of the gloves, helping to identify any potential defects or degradation that could compromise the user's safety while working with high-voltage equipment.

2. What equipment is commonly used to measure winding resistance?

- A. Oscilloscope
- B. Multimeter
- C. Kelvin bridge**
- D. Power analyzer

The correct answer is the Kelvin bridge, which is specifically designed to measure low resistance values accurately. This bridge configuration utilizes a four-wire setup, which helps eliminate the resistance of the test leads from the measurement, resulting in a more precise reading of the winding resistance. In contrast, while a multimeter is a versatile tool that can also be used to measure resistance, it may not provide the same level of accuracy for low resistance values due to the inherent resistance of the test leads and its calibration limitations. An oscilloscope is primarily used for analyzing voltage signals over time, and while it can indirectly measure certain characteristics of electrical components, it is not designed for resistance measurements. A power analyzer, on the other hand, focuses on analyzing power parameters in electrical systems, such as voltage, current, power factor, and harmonics, rather than specifically measuring winding resistance. Therefore, the Kelvin bridge stands out as the most appropriate tool for accurately measuring winding resistance in electrical applications.

3. According to UL Standard 891, which defines the standards for equipment?

- A. Voltage rating**
- B. Short circuit withstand rating**
- C. Interrupting rating**
- D. Ampere rating**

The correct choice, which is the short circuit withstand rating, is critical because it specifies the maximum amount of short circuit current that a piece of equipment can withstand without damage. This rating is essential for ensuring the safety and reliability of electrical installations. It helps determine whether the equipment can withstand fault conditions without failing, which is vital for protecting both the equipment itself and the electrical system as a whole. Voltage rating relates to the maximum voltage the equipment can handle safely. While important, it doesn't specifically address the equipment's behavior during fault conditions like short circuits. Likewise, the interrupting rating refers to the maximum fault current that the equipment can interrupt safely, while ampere rating indicates the maximum current the device can carry under normal operating conditions. Although these ratings are significant, they do not focus on the ability of the equipment to endure short circuits over time, which is the primary concern outlined in UL Standard 891 regarding safety and functionality during electrical faults.

4. What is the primary focus of ANSI?

- A. Setting safety standards**
- B. Developing electrical regulations**
- C. National standards development**
- D. Industrial testing standards**

The primary focus of ANSI (American National Standards Institute) is indeed on national standards development, which encompasses a broad range of industries and sectors. ANSI's role is crucial in establishing a framework for standardization that promotes efficiency, safety, and compatibility among products and services. By coordinating the development of voluntary consensus standards, ANSI ensures that various stakeholders, including industry professionals, consumers, and government entities, are able to contribute to the standard-setting process. This involvement means that ANSI helps to harmonize standards across different sectors, enhancing interoperability and facilitating trade. The organization also plays a significant role in representing the United States in international standards organizations, fostering global standardization efforts. While safety standards, electrical regulations, and industrial testing are certainly important areas within the landscape of standardization, they are specific applications that fall under the broader umbrella of national standards development, which is what ANSI primarily focuses on.

5. After performing a winding-resistance test on a dry-type transformer, what is acceptable per NETA standards if the temperature corrected values do not compare within two percent of previously obtained results?

- A. Yes**
- B. No**
- C. Depends on the age of the transformer**
- D. Always requires a follow-up test**

The correct choice highlights that if the temperature-corrected values from a winding-resistance test do not compare within two percent of previously obtained results, this scenario is deemed unacceptable according to NETA standards. Maintaining consistency in test results is crucial for ensuring that transformers are functioning properly and safely. Variations beyond this threshold may indicate underlying issues such as deteriorating insulation, loose or corroded connections, or other potential faults that could compromise the transformer's performance or safety. It is essential for technicians to recognize when results fall outside of acceptable limits, as this signals the need for further investigation, maintenance, or potentially remedial action to prevent failure or safety hazards. This approach is part of a broader preventative maintenance strategy aimed at ensuring that electrical equipment operates effectively and safely throughout its service life.

6. What must voltage detectors have to ensure safety?

- A. Measurement category for the job**
- B. Personal protective equipment**
- C. Backup power supply**
- D. Calibration certificate**

Voltage detectors must have a measurement category for the job to ensure safety because this categorization defines the proper application and the level of transient overvoltage that the equipment can safely withstand. Measurement categories (often referred to as CAT ratings) indicate the environment in which the tool is designed to operate, ranging from basic household circuits to high-energy environments such as industrial settings. The measurement category ensures that the voltage detector can accurately and safely measure voltage without the risk of failure or danger to the user. This is crucial because using a voltage detector in an environment for which it is not rated could result in inaccurate readings or equipment damage, leading to potentially hazardous situations for the technician or engineer. While personal protective equipment, backup power supply, and calibration certificates may enhance safety or functionality, it is the measurement category that directly relates to the operational safety of the voltage detector itself in the specific application for which it is used.

7. In a three-phase, squirrel-cage induction motor, where is the field located?

- A. In the stator**
- B. In the rotor**
- C. In the winding**
- D. In the power source**

In a three-phase, squirrel-cage induction motor, the rotor is where the magnetic field is primarily produced and interacts with the stator field. However, it's vital to clarify that in this type of motor, the rotating magnetic field that induces the current in the rotor actually originates from the stator windings. The stator generates a rotating magnetic field due to the three-phase AC current that flows through the stator windings. This rotating magnetic field induces a current in the rotor, typically made of conductive bars shorted at both ends (forming a "squirrel cage"), creating its own magnetic field as a result. The interaction of these fields is what causes the rotor to turn. Therefore, while the rotor does not have a field in the conventional sense, it does produce a magnetic effect due to the induced currents. The most accurate description of where the field is located in a squirrel-cage induction motor points to the stator, as it is the source of the magnetic field that drives the motor. Understanding this is crucial for grasping how induction motors operate, as the induced rotor current is fundamentally a response to the stator's rotating magnetic field.

8. What is the minimum operating time of a Buchholz relay?

- A. 0.05 seconds**
- B. 0.1 seconds**
- C. 0.2 seconds**
- D. 1.0 seconds**

The minimum operating time of a Buchholz relay is typically set to 0.1 seconds. This timing is crucial for its functionality, as the Buchholz relay is an essential protective device used in oil-filled transformers. It is designed to detect gas buildup or sudden changes in pressure within the transformer, which are indicative of internal faults. When abnormalities occur, the relay operates by recognizing these changes and sending a signal to trip the circuit. The 0.1-second threshold allows the relay to respond quickly enough to mitigate potential damage from transformer faults while still accommodating the necessary time for mechanical response and ensuring the relay does not trip on transient conditions that are not indicative of genuine faults. This careful balance of operating time is why 0.1 seconds is a standard minimum, ensuring effective protection without introducing nuisance trips.

9. What does ANSI represent?

- A. American National Standards Institute**
- B. American National Society for Initiatives**
- C. American National Standards Integration**
- D. American National Standards Index**

The correct answer, American National Standards Institute, is significant because ANSI is the official organization that oversees the development of voluntary consensus standards for various products, services, processes, and systems in the United States. ANSI coordinates standards development activities among numerous organizations and industries, ensuring that standards are established in a fair and collaborative manner. This role is crucial for promoting the quality, safety, and efficiency of products across industries, as it helps in establishing benchmarks that can enhance competitiveness and innovation. The other options do not accurately represent what ANSI stands for. They either introduce terms that are not recognized as part of the organization's name or misinterpret its purpose within the standards development landscape. Understanding ANSI's role is vital for comprehending how national and international standards are developed and maintained, impacting numerous sectors including safety, technology, and manufacturing.

10. What is defined as the arc flash boundary?

- A. The distance from which personnel can view work being done**
- B. The distance at which the incident energy equals 1.2 cal/cm²**
- C. The distance from live parts where grounded tools can be used**
- D. The distance where equipment must be turned off**

The arc flash boundary is defined as the distance at which the incident energy equals 1.2 cal/cm². This measure is crucial for safety as it helps determine the area around electrical equipment where personnel may be exposed to arc flash hazards. Understanding this boundary allows organizations to implement appropriate safety measures, such as personal protective equipment (PPE) requirements, ensuring that workers remain at a safe distance to minimize the risk of severe injury from an electrical arc flash incident. The significance of the 1.2 cal/cm² threshold lies in it being a standard reference for assessing the risk of thermal injuries due to arc flash events. Once personnel are outside this boundary, they are generally considered to be at a reduced risk of injury associated with potential arc flash incidents. This definition emphasizes the importance of accurate distance calculation for effective training and safety protocols in environments with electrical systems.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://netaettcertassistantlvl2.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE