

NEHA Wastewater Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the primary role of disinfection in wastewater treatment?**
 - A. Increase dissolved oxygen levels**
 - B. Remove larger particles**
 - C. Eliminate pathogenic organisms**
 - D. Balance chemical parameters**
- 2. Why is effective management of non-point source pollution important in wastewater systems?**
 - A. It can cause algae blooms in water bodies**
 - B. It can lead to system overload during storms**
 - C. It is easier to manage than point source pollution**
 - D. It directly affects the taste of drinking water**
- 3. Which contaminants are targeted in biological treatment processes?**
 - A. Heavy metals and toxins**
 - B. Organic matter and nitrogen compounds**
 - C. Pathogens and fats**
 - D. Chlorinated solvents and pesticides**
- 4. What is the purpose of a grease trap in a wastewater system?**
 - A. To remove odors from wastewater**
 - B. To filter out solids from wastewater**
 - C. To prevent the accumulation of grease in pipes**
 - D. To treat the wastewater for reuse**
- 5. What role does the disinfection step play in wastewater treatment?**
 - A. To improve water color**
 - B. To eliminate pathogens before discharge**
 - C. To enhance the growth of algae**
 - D. To remove heavy inorganic materials**

6. What is a preferred method for sizing absorption fields in soil analysis?

- A. Soil density measurement**
- B. Visual inspection of soil**
- C. Conducting a percolation test**
- D. Using soil chemical composition only**

7. What is a critical reason for reducing pollutants in sewage disposal?

- A. To increase property value**
- B. To enhance water taste**
- C. To maintain environmental regulations**
- D. To prevent spread of diseases**

8. What does TSS stand for, and why is it important?

- A. Toxic Solid Substances; it affects chemical reactions**
- B. Total Suspended Solids; measures particles in water**
- C. Total Solid Solutions; impacts density**
- D. Transitional Solid States; indicates treatment stages**

9. During which treatment stage are solids primarily removed?

- A. Secondary treatment**
- B. Tertiary treatment**
- C. Primary treatment**
- D. Quaternary treatment**

10. What is the role of chlorination in wastewater treatment?

- A. To enhance the nutrient content of the effluent**
- B. To clarify the water by removing solids**
- C. To disinfect the effluent by killing pathogens**
- D. To reduce the BOD levels in wastewater**

Answers

SAMPLE

1. C
2. B
3. B
4. C
5. B
6. C
7. D
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. What is the primary role of disinfection in wastewater treatment?

- A. Increase dissolved oxygen levels
- B. Remove larger particles
- C. Eliminate pathogenic organisms**
- D. Balance chemical parameters

The primary role of disinfection in wastewater treatment is to eliminate pathogenic organisms. This is a critical step in the treatment process, as pathogens can pose significant health risks to humans and the environment if released into water bodies or reused. Disinfection processes, such as chlorination, ultraviolet (UV) irradiation, and ozonation, are employed to kill or deactivate these harmful microorganisms, ensuring that the treated wastewater is safe for discharge or reuse. Focusing on the other aspects of wastewater treatment highlights why disinfection stands out in this context. While increasing dissolved oxygen levels is important for biological treatment processes and helps support aerobic microorganisms that decompose organic matter, it does not specifically target pathogens. Similarly, removing larger particles is primarily accomplished through physical treatments such as sedimentation and screening, which concentrates on solid waste rather than microorganisms. Balancing chemical parameters is essential for overall water quality but does not directly address pathogen elimination. Thus, the specific goal of disinfection uniquely underscores its vital role in wastewater treatment.

2. Why is effective management of non-point source pollution important in wastewater systems?

- A. It can cause algae blooms in water bodies
- B. It can lead to system overload during storms**
- C. It is easier to manage than point source pollution
- D. It directly affects the taste of drinking water

Effective management of non-point source pollution in wastewater systems is crucial primarily because of its potential to lead to system overload during storms. Non-point source pollution refers to contaminants that come from diffuse sources rather than a single identifiable source, such as runoff from rainfall or snowmelt, which can carry pollutants from various land surfaces into water bodies. During heavy storms, the volume of water and the quantity of pollutants entering the wastewater systems can increase significantly. This can overwhelm the treatment facilities that are designed to handle a certain flow rate and pollutant load, leading to sewage overflows or inadequate treatment of waste. Such scenarios can result in serious environmental and public health issues, as untreated or poorly treated wastewater can contaminate nearby water bodies, affect aquatic life, and pose risks to human health. While other options touch on important aspects of pollution, they don't capture the critical significance of managing non-point source pollution in the context of wastewater systems. Algae blooms can be a consequence of nutrient loading from non-point sources, but the immediate concern during storm events is the capacity of wastewater systems to handle sudden influxes. The ease of managing non-point pollution compared to point source pollution does not hold true; in fact, the diffuse nature of non-point sources makes them more challenging to manage.

3. Which contaminants are targeted in biological treatment processes?

- A. Heavy metals and toxins**
- B. Organic matter and nitrogen compounds**
- C. Pathogens and fats**
- D. Chlorinated solvents and pesticides**

In biological treatment processes, the primary focus is on degrading organic matter and nitrogen compounds. This is because biological treatment relies on microorganisms, such as bacteria and protozoa, which thrive on organic materials as their source of energy. These microorganisms metabolize organic substances, breaking them down into simpler compounds. Additionally, nitrogen compounds, including ammonia and nitrates, are significant contributors to water pollution and can cause harmful environmental effects. Biological treatment processes often incorporate steps like nitrification and denitrification to effectively manage nitrogen levels in wastewater. While the other options mention pollutants that may also require treatment, they are not the primary targets of biological treatment methods. Heavy metals and toxins often necessitate physical or chemical processes for removal due to their non-biodegradable nature. Pathogens may be dealt with in biological processes, but they do not represent the main goal; usually, additional measures are taken to ensure that pathogens are effectively removed. Chlorinated solvents and pesticides tend to require specialized technologies for degradation or removal, as many of these substances are resistant to biological processes. Therefore, the emphasis on organic matter and nitrogen compounds positions them as the correct focus of biological treatment in wastewater management.

4. What is the purpose of a grease trap in a wastewater system?

- A. To remove odors from wastewater**
- B. To filter out solids from wastewater**
- C. To prevent the accumulation of grease in pipes**
- D. To treat the wastewater for reuse**

A grease trap serves a crucial function in a wastewater system by specifically targeting the accumulation of grease and fats that can clog plumbing and create hazardous conditions in the sewer system. In commercial settings such as restaurants or food processing areas, large amounts of grease are generated, and if these substances are allowed to enter the wastewater system without treatment, they can solidify and adhere to pipes. This leads to blockages, backups, and potential damage to the infrastructure. By utilizing a grease trap, grease and other lipids are separated from the wastewater, allowing only water and smaller particles to flow into the sewer system. This not only helps maintain smooth operation within the plumbing but also prevents the formation of grease-related issues that could necessitate expensive repairs or even environmental penalties due to overflow or contamination. The other options touch on different aspects of wastewater management but do not accurately reflect the primary function of a grease trap. While filtering solids or treating water may be important processes in wastewater treatment, the grease trap's main goal remains focused on managing grease to ensure the long-term efficiency and safety of the wastewater system.

5. What role does the disinfection step play in wastewater treatment?

- A. To improve water color**
- B. To eliminate pathogens before discharge**
- C. To enhance the growth of algae**
- D. To remove heavy inorganic materials**

The disinfection step in wastewater treatment is crucial because it is specifically designed to eliminate pathogens, which are disease-causing microorganisms such as bacteria, viruses, and protozoa. This step is essential for protecting public health, especially when treated water is to be discharged into natural water bodies or reused for irrigation or other purposes. By effectively reducing the number of harmful microorganisms, disinfection ensures that the treated wastewater meets regulatory standards and is safe for the environment and human contact. The other options do not accurately reflect the purpose of disinfection. Improving water color is more related to other treatment processes, like clarification and filtration. The enhancement of algae growth is not a goal of disinfection; in fact, excessive algae can indicate nutrient overload or poor water quality management. The removal of heavy inorganic materials typically occurs in earlier stages of treatment, such as sedimentation and filtration processes, rather than during disinfection.

6. What is a preferred method for sizing absorption fields in soil analysis?

- A. Soil density measurement**
- B. Visual inspection of soil**
- C. Conducting a percolation test**
- D. Using soil chemical composition only**

Conducting a percolation test is a widely recognized and preferred method for sizing absorption fields because it directly measures the rate at which water moves through the soil. This test is crucial for understanding the soil's ability to absorb effluent from a septic system, which influences the design and size of the absorption area required. Percolation tests involve digging test holes and observing how quickly water drains away in the soil. The results provide valuable data on soil permeability, which is essential for determining the appropriate size for the absorption field to ensure effective wastewater treatment and prevent potential failures or environmental contamination. Other methods, such as soil density measurement, visual inspection, and using soil chemical composition alone, do not provide a comprehensive understanding of how the soil will behave under real-world conditions involving effluent absorption and filtration. Soil density may indicate compaction but does not directly correlate with percolation rates. Visual inspection can identify some soil characteristics, but it lacks the quantitative data needed for accurate sizing. Relying solely on soil chemical composition does not account for physical properties necessary for wastewater absorption, making the percolation test the most reliable method in this context.

7. What is a critical reason for reducing pollutants in sewage disposal?

- A. To increase property value**
- B. To enhance water taste**
- C. To maintain environmental regulations**
- D. To prevent spread of diseases**

Reducing pollutants in sewage disposal is critical primarily to prevent the spread of diseases. Sewage can contain a variety of pathogens, including bacteria, viruses, and parasites that pose significant health risks to humans and wildlife. When untreated or inadequately treated sewage is released into the environment, it can contaminate water sources, such as rivers, lakes, and groundwater. This contamination can lead to outbreaks of waterborne diseases, ultimately affecting public health. Effective sewage treatment processes are designed to reduce the concentrations of harmful microorganisms and other pollutants, thereby protecting the health of communities and the ecosystems they depend on. This prevention of disease transmission is a fundamental aspect of public health policy and environmental management. While the other options may have their merits, the direct health implications of sewage pollution make controlling and reducing pollutants a priority. Regulations and standards often focus on disease prevention, recognizing that maintaining a healthy environment is essential for community welfare.

8. What does TSS stand for, and why is it important?

- A. Toxic Solid Substances; it affects chemical reactions**
- B. Total Suspended Solids; measures particles in water**
- C. Total Solid Solutions; impacts density**
- D. Transitional Solid States; indicates treatment stages**

Total Suspended Solids, abbreviated as TSS, refers to the measurement of solid particles suspended in water. This includes a variety of materials such as silt, decaying plant and animal matter, and industrial wastes that can affect water quality. The concentration of TSS is essential in wastewater management as it provides valuable insights into the potential impact of the wastewater on the environment and public health. Monitoring TSS is crucial for several reasons. First, high levels of suspended solids can lead to increased turbidity, which negatively affects aquatic life by reducing light penetration and disrupting photosynthesis. Second, suspended solids can carry pollutants, including pathogens and harmful chemicals, thereby contributing to water pollution. Additionally, the presence of TSS can complicate the treatment processes, making it harder to achieve compliance with discharge standards. Understanding TSS levels helps operators of wastewater treatment facilities to optimize their processes, ensuring that they adequately remove particles before the water is released into the environment. This ability to manage TSS effectively contributes to maintaining overall water quality and protecting ecosystems.

9. During which treatment stage are solids primarily removed?

- A. Secondary treatment**
- B. Tertiary treatment**
- C. Primary treatment**
- D. Quaternary treatment**

The correct choice indicates that solids are primarily removed during the primary treatment stage of wastewater treatment. This initial phase is crucial for reducing the overall solid content in the wastewater before it undergoes further treatment processes. Primary treatment primarily involves physical processes such as sedimentation, where larger solids settle at the bottom of settling tanks, forming sludge. Additionally, some floating materials, like oils and grease, are skimmed off the surface. This stage effectively removes a significant portion of suspended solids and organic matter, thereby reducing the load on subsequent treatment stages, which focus more on biological and chemical remediation. Understanding the role of primary treatment in solid removal is essential, as it lays the groundwork for the efficiency and effectiveness of the entire wastewater treatment process.

10. What is the role of chlorination in wastewater treatment?

- A. To enhance the nutrient content of the effluent**
- B. To clarify the water by removing solids**
- C. To disinfect the effluent by killing pathogens**
- D. To reduce the BOD levels in wastewater**

Chlorination plays a critical role in wastewater treatment primarily as a disinfection method. When chlorine is added to wastewater, it effectively targets and kills a wide range of harmful pathogens, including bacteria and viruses that could pose health risks if the treated effluent is released into the environment or used for irrigation. By ensuring that these microorganisms are eliminated, chlorination helps to protect public health and minimize environmental contamination, making it a vital step in the treatment process. While enhancement of nutrient content, clarification by removal of solids, and reduction of biological oxygen demand (BOD) are also important aspects of wastewater treatment, they serve different purposes. Enhancing nutrient content is about making wastewater more beneficial for agricultural use, clarification focuses on improving water appearance and quality by removing particulate matter, and reducing BOD is aimed at lowering the organic load that negatively impacts water bodies. None of these processes directly address the disinfection needs that chlorination fulfills.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://nehawastewater.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE