

NEHA Radiation Protection Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. How many half-lives are generally required to reduce the radioactivity of a radionuclide to about 1% of its original value?**
 - A. 5
 - B. 6
 - C. 7
 - D. 8

- 2. Which type of radiation has enough energy to remove electrons from atoms?**
 - A. Non-ionizing radiation
 - B. Ionizing radiation
 - C. Both A and B
 - D. Neither A nor B

- 3. Damage to human tissue from ionizing radiation occurs at the _____ level.**
 - A. Atomic
 - B. Cellular
 - C. Tissue
 - D. Organ

- 4. The energy of ionizing radiation is measured in _____.**
 - A. Joules
 - B. Electron volts (eV)
 - C. Rads
 - D. Sieverts

- 5. Who should you consult with to determine if diathermy is right for you?**
 - A. A doctor or physical therapist
 - B. A chiropractor or massage therapist
 - C. Any healthcare provider
 - D. Friends or family

6. Radon is detected in a home through the measurement of _____.

- A. Beta particles**
- B. Gamma rays**
- C. Alpha particles**
- D. X-rays**

7. In what way does the PAG contribute during a radiological emergency?

- A. By detailing legal repercussions**
- B. By providing recommended actions to protect public health**
- C. By assessing financial implications**
- D. By coordinating international responses**

8. What defines a 'contamination survey'?

- A. A method for assessing personnel exposure**
- B. A systematic process to detect radioactive contamination in an area**
- C. An evaluation of waste disposal methods**
- D. A technique for managing radioactive materials inventory**

9. What happens to frequency and energy as the wavelength decreases?

- A. The frequency decreases and energy increases**
- B. The frequency increases and energy decreases**
- C. The higher the frequency and energy**
- D. Both frequency and energy remain constant**

10. Which regulatory body's guidelines are often followed for radiation safety?

- A. The Food and Drug Administration (FDA)**
- B. The Nuclear Regulatory Commission (NRC)**
- C. The Centers for Disease Control and Prevention (CDC)**
- D. The National Institutes of Health (NIH)**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. A
6. C
7. B
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. How many half-lives are generally required to reduce the radioactivity of a radionuclide to about 1% of its original value?

- A. 5**
- B. 6**
- C. 7**
- D. 8**

To determine how many half-lives are needed to reduce the radioactivity of a radionuclide to about 1% of its original value, we need to understand the concept of half-lives in radioactive decay. Each half-life period reduces the remaining quantity of a radionuclide by half. After one half-life, 50% of the original quantity remains. After two half-lives, 25% remains, then after three half-lives, it drops to 12.5%. Continuing this process, we evaluate the following: - After four half-lives, 6.25% remains. - After five half-lives, 3.125% remains. - Finally, after six half-lives, only 1.5625% remains. At this point, we have determined that by the end of six half-lives, the amount of radioactivity is already slightly above 1%. Since the question asks for the point at which the radioactivity is about 1%, six half-lives would indicate a dramatic reduction, allowing us to approximate down to that threshold. Thus, the answer indicating that approximately seven half-lives would bring the remaining radioactivity down to less than 1% (as it would be

2. Which type of radiation has enough energy to remove electrons from atoms?

- A. Non-ionizing radiation**
- B. Ionizing radiation**
- C. Both A and B**
- D. Neither A nor B**

Ionizing radiation possesses enough energy to remove tightly bound electrons from atoms, thereby creating ions. This process occurs when the energy of the radiation exceeds the binding energy of the electrons in the atom. When ionization takes place, the atom is transformed into an ion by losing an electron, which can lead to chemical reactions that may cause damage to biological tissue and DNA. Types of ionizing radiation include alpha particles, beta particles, gamma rays, and X-rays, all of which have sufficient energy to dislodge electrons. This characteristic is critical in the fields of radiation protection and health physics because it highlights the potential hazards associated with exposure to ionizing radiation. In contrast, non-ionizing radiation, which includes types like visible light, ultraviolet light, and radio waves, does not carry enough energy to eject electrons from atoms. Instead, non-ionizing radiation may only excite electrons, leading to transitions between energy levels, without causing ionization. Understanding the difference between these two types of radiation is crucial for evaluating their interactions with matter and the potential health risks associated with exposure.

3. Damage to human tissue from ionizing radiation occurs at the _____ level.

- A. Atomic**
- B. Cellular**
- C. Tissue**
- D. Organ**

Damage to human tissue from ionizing radiation occurs primarily at the cellular level. This is because ionizing radiation has enough energy to remove tightly bound electrons from atoms, leading to the formation of ions. When this ionization happens within biological tissues, it most significantly affects the cells themselves, disrupting cellular structures and functions. At the cellular level, radiation can cause direct DNA damage, or produce free radicals that can indirectly damage various cellular components. If the DNA is altered in a way that disrupts the cell's ability to replicate or function properly, it can lead to cell death, malignant transformations, or other forms of cellular dysfunction. While tissue, organ, and atomic levels are relevant in the context of radiation effects, the fundamental mechanism of injury occurs first at the cellular level. Understanding this distinction is crucial for radiation protection practices, as the goal is often to minimize cellular damage and its subsequent effects on tissues and organs. Thus, the cellular level is the most appropriate context for discussing initial damage from ionizing radiation.

4. The energy of ionizing radiation is measured in _____.

- A. Joules**
- B. Electron volts (eV)**
- C. Rads**
- D. Sieverts**

The energy of ionizing radiation is best measured in electron volts (eV). This unit specifically describes the energy gained by an electron when it is accelerated through an electric potential difference of one volt. Since ionizing radiation involves particles or photons that can cause ionization in atoms and molecules, the electron volt is particularly useful in measuring their energy levels. Ionizing radiation, such as photons from X-ray and gamma-ray sources, are often represented in terms of eV because it provides a convenient scale that reflects the energy ranges typically associated with these forms of radiation. For context, 1 eV is equivalent to approximately 1.6×10^{-19} joules, which indicates how small the energy values commonly associated with ionizing radiation can be. Other units mentioned, such as joules, rads, and sieverts, serve different purposes. Joules are a general unit of energy but are less practical for the context of ionizing radiation. Rads and sieverts are units of dose and biological effect, respectively, and while they are related to exposure and risk assessment, they do not measure the energy of the radiation itself.

5. Who should you consult with to determine if diathermy is right for you?

- A. A doctor or physical therapist**
- B. A chiropractor or massage therapist**
- C. Any healthcare provider**
- D. Friends or family**

Consulting with a doctor or physical therapist is essential when considering diathermy as a treatment option. These professionals have the necessary training and expertise to assess an individual's specific health conditions and determine if diathermy is appropriate for them. They can evaluate the patient's medical history, existing health issues, and any contraindications, ensuring that the treatment aligns with the patient's overall health plan. Moreover, a doctor or physical therapist can provide personalized recommendations on how diathermy can be integrated into an individual's therapy or rehabilitation goals. This level of professional guidance is crucial, as diathermy involves the use of heat and can have contraindications, particularly for those with certain medical conditions or who are pregnant. Engaging a qualified healthcare provider helps ensure that the treatment will be safe, effective, and tailored to the individual's needs.

6. Radon is detected in a home through the measurement of _____.

- A. Beta particles**
- B. Gamma rays**
- C. Alpha particles**
- D. X-rays**

Radon is a radioactive gas that is produced naturally from the decay of uranium in soil, rock, and water. When radon decays, it emits alpha particles, which are a type of ionizing radiation. The detection of radon in homes primarily involves measuring these alpha particles. The process of measuring radon usually utilizes detectors that can capture the alpha particles emitted by radon gas as it decays in the environment. This is crucial because alpha particles are unique to certain radioactive materials, including radon, making them a reliable indicator for the presence of this gas. While beta particles and gamma rays are types of radiation that can also be emitted by other radioactive materials, they are not specifically associated with radon detection. X-rays, on the other hand, are a different form of electromagnetic radiation unrelated to the decay products of radon. Therefore, the correct answer focuses on the direct measurement of alpha particles to ensure accurate radon detection in residential settings.

7. In what way does the PAG contribute during a radiological emergency?

- A. By detailing legal repercussions
- B. By providing recommended actions to protect public health**
- C. By assessing financial implications
- D. By coordinating international responses

The recommended actions to protect public health are a critical component of the PAG, or Protective Action Guidelines, during a radiological emergency. These guidelines are developed to help ensure the safety and well-being of individuals and communities exposed to radiation. They provide specific instructions on how to respond in various situations, such as evacuation protocols, sheltering in place, and decontamination efforts, which are essential for minimizing radiation exposure and mitigating health risks. The emphasis on protecting public health highlights the focus of the PAG on immediate safety responses and the implementation of measures that can effectively reduce the potential health impact of radiation exposure on affected populations. The nature of a radiological emergency often requires swift and clear communication regarding protective actions to ensure that individuals can act effectively in a crisis. In contrast, other options do not directly address the immediate health and safety concerns that arise during a radiological emergency. For example, details on legal repercussions or financial implications, while important in a broader context, do not directly contribute to the health and safety measures that are critical in the face of radiation exposure. Similarly, while international coordination may be necessary in larger-scale incidents, the primary role of PAG is focused on actions that individuals and communities can take to protect themselves during a radiological event.

8. What defines a 'contamination survey'?

- A. A method for assessing personnel exposure
- B. A systematic process to detect radioactive contamination in an area**
- C. An evaluation of waste disposal methods
- D. A technique for managing radioactive materials inventory

A contamination survey is primarily defined as a systematic process to detect radioactive contamination in an area. This involves using specialized instruments and techniques to identify the presence of radioactive materials on surfaces, in the air, or within equipment. The goal of such a survey is to assess the extent of contamination, which is crucial for ensuring safety and compliance with regulatory standards. Conducting contamination surveys is vital in environments where radioactive materials are used or stored, allowing for appropriate decontamination measures to be implemented if necessary. This process helps to protect both personnel and the public from potential exposure to harmful radiation levels by ensuring that contaminated areas are identified and managed effectively. The other options, while related to radiation safety and management, do not specifically encapsulate the primary purpose of a contamination survey. For instance, assessing personnel exposure concerns individual safety rather than area contamination detection. Evaluating waste disposal methods focuses on how radioactive waste is managed rather than on identifying contamination in the environment. Managing radioactive materials inventory is related to tracking materials rather than assessing contamination levels. Hence, the systematic approach of option B aligns directly with the definition and purpose of a contamination survey.

9. What happens to frequency and energy as the wavelength decreases?

- A. The frequency decreases and energy increases**
- B. The frequency increases and energy decreases**
- C. The higher the frequency and energy**
- D. Both frequency and energy remain constant**

As the wavelength of electromagnetic radiation decreases, both frequency and energy increase. This relationship is grounded in fundamental physics principles, specifically the wave equation and the energy equation. The speed of light (c) is constant in a vacuum and is given by the relationship $c = \lambda f$, where (λ) is the wavelength and (f) is the frequency. When the wavelength (λ) decreases, the frequency (f) must increase to keep the equation balanced, since the speed of light remains constant. In addition, the energy of a photon is related to its frequency by the equation $E = hf$, where (E) is the energy and (h) is Planck's constant. As frequency increases, the energy corresponds to an increase as well. Therefore, a decrease in wavelength results in an increase in both frequency and energy. This clear relationship illustrates why the correct answer affirmatively states that frequency and energy are both higher when wavelength is lower.

10. Which regulatory body's guidelines are often followed for radiation safety?

- A. The Food and Drug Administration (FDA)**
- B. The Nuclear Regulatory Commission (NRC)**
- C. The Centers for Disease Control and Prevention (CDC)**
- D. The National Institutes of Health (NIH)**

The Nuclear Regulatory Commission (NRC) is the primary regulatory body in the United States responsible for overseeing the use of nuclear energy and materials, including guidelines for radiation safety. The NRC's mission encompasses protecting public health and safety, promoting the common defense and security, and protecting the environment. It establishes regulations and standards that govern the use of radioactive materials in various contexts, such as medical applications, industrial uses, and waste management. The NRC develops guidelines that specify acceptable radiation exposure limits, required safety measures, and monitoring practices to ensure the safety of workers, the public, and the environment. These guidelines are crucial for organizations that handle radioactive materials, as they help in maintaining compliance with federal laws and minimizing radiation hazards. In contrast, while the FDA, CDC, and NIH play important roles in public health and safety, their focus areas are distinct. The FDA regulates food, drugs, and medical devices; the CDC focuses on disease prevention and health promotion; and the NIH is involved in medical research. While they may incorporate elements of radiation safety in their work, particularly in medical contexts, the NRC is specifically dedicated to the regulatory oversight of radiation safety measures.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://neharadprotection.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE