

NEHA Environmental Health and Safety (EHS) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What percentage of hospital beds worldwide are occupied by water-related diseases?**
 - A. 10%**
 - B. 25%**
 - C. 50%**
 - D. 75%**
- 2. What type of sound frequencies are reported to be most effective against bacteria?**
 - A. High intensity, low frequency**
 - B. Medium intensity, medium frequency**
 - C. Low intensity, high frequency**
 - D. Low intensity, low frequency**
- 3. How is sound primarily produced?**
 - A. Through chemical reactions**
 - B. Through vibration conducted through matter**
 - C. Through electronic signals**
 - D. Through thermal energy transformation**
- 4. What is the formula for calculating pool turnover rate?**
 - A. Turnover rate (hours) = pool volume (gallons) / flow rate (gallons per minute)**
 - B. Turnover rate (hours) = flow rate (gallons per minute) / pool volume (gallons)**
 - C. Turnover rate (hours) = pool volume (liters) x flow rate (gallons per hour)**
 - D. Turnover rate (hours) = pool volume (gallons) / flow rate (gallons per hour)**
- 5. What defines ignitability in hazardous waste?**
 - A. Wastes that have a flash point less than 60 degrees Celsius**
 - B. Wastes that are always safe**
 - C. Wastes that need special recycling**
 - D. Wastes that are biodegradable**

6. Which material would be least likely to contain asbestos?

- A. Insulation materials**
- B. Ceramic tiles**
- C. Roofing shingles**
- D. Textiles**

7. What does the principle of multiple barriers aim to interrupt?

- A. Economic factors affecting health**
- B. Environmental contaminants in food supply**
- C. Disease transmission at host, environment, and agent**
- D. Access to healthcare services**

8. What does the acronym NIOSH stand for?

- A. National Institute for Occupational Safety and Health**
- B. National Industrial Organization for Safety and Health**
- C. National Initiative for Occupational Safety and Hygiene**
- D. National Institute of Safety and Health**

9. What is the proper sequence for decontamination of a radioactive spill?

- A. From the most contaminated areas to the least contaminated areas**
- B. From the least contaminated areas to the most contaminated areas**
- C. In random order based on accessibility**
- D. In accordance with contamination levels only**

10. What do NSF and USL primarily certify?

- A. Food service equipment**
- B. Medical devices**
- C. Water purification systems**
- D. Industrial machinery**

Answers

SAMPLE

1. C
2. C
3. B
4. A
5. A
6. B
7. C
8. A
9. B
10. A

SAMPLE

Explanations

SAMPLE

1. What percentage of hospital beds worldwide are occupied by water-related diseases?

- A. 10%**
- B. 25%**
- C. 50%**
- D. 75%**

The correct response highlights that approximately 50% of hospital beds worldwide are occupied by patients suffering from water-related diseases. This statistic is significant because it underscores the global impact of water quality and availability on health. Water-related diseases, which include illnesses caused by contaminated water such as cholera, dysentery, and typhoid fever, often lead to serious health conditions that require hospitalization. The fact that a substantial portion of hospital resources is consumed by these diseases illustrates the critical need for improved water sanitation, hygiene, and access to clean drinking water as part of public health strategies. By addressing these issues, it's possible to reduce the burden of disease, leading to lower hospital occupancy rates and improved health outcomes globally. This context emphasizes the importance of environmental health as an integral part of healthcare systems.

2. What type of sound frequencies are reported to be most effective against bacteria?

- A. High intensity, low frequency**
- B. Medium intensity, medium frequency**
- C. Low intensity, high frequency**
- D. Low intensity, low frequency**

The most effective sound frequencies against bacteria are typically high frequencies, and this is the basis for selecting low intensity, high frequency as the correct answer. Research has shown that ultrasonic frequencies can disrupt bacterial cells and inhibit their growth. These high-frequency sound waves can cause mechanical stress on bacterial membranes and lead to cell lysis or death, effectively reducing bacterial populations. In contrast, lower frequencies often do not have the same disruptive capabilities, as they do not have the same level of energy to affect the physical structure of bacterial cells. Similarly, intensity plays a role; while higher intensity can potentially damage cells, low intensity at high frequencies allows for targeted action without causing excessive damage to surrounding tissues or materials. This highlights why the choice of low intensity, high frequency is particularly effective in this context—allowing for precise targeting against bacteria while minimizing potential harm to other biological or material structures nearby.

3. How is sound primarily produced?

- A. Through chemical reactions
- B. Through vibration conducted through matter**
- C. Through electronic signals
- D. Through thermal energy transformation

Sound is primarily produced through the vibration of objects, which creates compressions and rarefactions in the surrounding medium—such as air, water, or solids. When an object vibrates, it disturbs the particles in the medium, causing them to oscillate and transfer energy from one particle to another. This transfer of energy is what allows sound waves to propagate through the medium. The process can be observed in various scenarios, such as a tuning fork being struck, where its tines vibrate and generate sound waves that travel through the air. This phenomenon underscores the fundamental principle that sound requires a medium to travel and is fundamentally linked to the mechanical vibrations of matter. The other choices refer to factors that do not directly produce sound in the way that vibration does. Chemical reactions can generate sound as a byproduct, but they are not the primary means of sound production. Electronic signals can create sound when converted through devices like speakers, but this is based on vibrating components within the device, not the generation of sound in its raw form. Thermal energy transformation does not inherently create sound; while the expansion and contraction due to heat can result in sound, it is typically the vibrations caused by heat-induced changes that create audible noise. Hence, the correct choice highlights the

4. What is the formula for calculating pool turnover rate?

- A. Turnover rate (hours) = pool volume (gallons) / flow rate (gallons per minute)**
- B. Turnover rate (hours) = flow rate (gallons per minute) / pool volume (gallons)
- C. Turnover rate (hours) = pool volume (liters) x flow rate (gallons per hour)
- D. Turnover rate (hours) = pool volume (gallons) / flow rate (gallons per hour)

The formula for calculating pool turnover rate is correctly represented by the selected choice, which states that the turnover rate in hours is determined by dividing the pool volume (in gallons) by the flow rate (in gallons per minute). To understand this, it is essential to recognize that the turnover rate indicates how long it takes for the entire volume of water in a pool to be circulated through the filtration system. By taking the total volume of the pool and dividing it by the flow rate, you determine the time required (in minutes) to completely filter the water. Since the question asks for the turnover rate in hours, this final result would often need to be converted from minutes to hours. However, the fundamental formula conceptually remains correct. In contrast, other choices provide incorrect formulations. For instance, one option mistakenly reverses the division, leading to an incorrect calculation that does not represent the actual time necessary for water turnover. Another option introduces incorrect units, combining liters and gallons improperly, which would not yield a meaningful result. Finally, one choice also incorrectly uses an hourly flow rate rather than a per-minute rate, leading to a miscalculation of the turnover time. Understanding the correct application of flow rates and pool volume is crucial for achieving accurate calculations in pool

5. What defines ignitability in hazardous waste?

- A. Wastes that have a flash point less than 60 degrees Celsius**
- B. Wastes that are always safe**
- C. Wastes that need special recycling**
- D. Wastes that are biodegradable**

Ignitability in hazardous waste is defined by the characteristic of a waste that has a flash point less than 60 degrees Celsius (140 degrees Fahrenheit). This means that such wastes can easily catch fire and pose a significant risk of fire and explosion. The flash point is the temperature at which a substance can vaporize to form an ignitable mixture in air, which is a critical factor in determining the safety and handling procedures for hazardous materials. The definition of ignitability is crucial for waste management and environmental safety, as it helps regulators and waste handlers identify materials that require special care to prevent fires and environmental hazards. By recognizing these wastes, appropriate measures can be implemented to handle, store, and dispose of ignitable materials safely. This understanding emphasizes the importance of classifying hazardous waste accurately to protect human health and the environment. Other choices do not relate to the concept of ignitability; they either describe characteristics that do not pertain to the danger of ignition or imply safety or biodegradability, which do not apply to the criteria for determining a waste's ignitability.

6. Which material would be least likely to contain asbestos?

- A. Insulation materials**
- B. Ceramic tiles**
- C. Roofing shingles**
- D. Textiles**

Ceramic tiles are typically the least likely to contain asbestos compared to the other materials listed. Asbestos was commonly used in insulation materials, roofing shingles, and textiles due to its heat-resistant properties. Insulation materials, for example, often incorporated asbestos to improve thermal resistance and fire safety. Similarly, roofing shingles sometimes contained asbestos fibers to enhance durability and strength. In contrast, the use of asbestos in ceramic tiles is far less common. While some older tiles might contain asbestos, particularly those made prior to the 1980s, most ceramic tiles produced in more recent times do not include this hazardous material. The production process for ceramic tiles focuses on different substances and does not typically require the inclusion of asbestos for structural integrity or functionality. This makes ceramic tiles a safer option when assessing the likelihood of asbestos presence.

7. What does the principle of multiple barriers aim to interrupt?

- A. Economic factors affecting health**
- B. Environmental contaminants in food supply**
- C. Disease transmission at host, environment, and agent**
- D. Access to healthcare services**

The principle of multiple barriers is designed to prevent disease transmission by implementing various protective measures that interrupt potential pathways through which pathogens can spread. This approach is critical in public health, as it addresses the interrelated factors of the host, environment, and the pathogen (agent) involved in disease transmission. By establishing multiple barriers, such as vaccination, sanitation, pest control, and public awareness, the likelihood of a pathogen's survival and spread is significantly reduced. Each of these barriers serves as a defense point, helping to control the avenues through which infections can occur, ensuring that even if one barrier fails, others remain in place to prevent disease outbreaks. In contrast, the other options focus on areas outside the direct mechanism of disease transmission. Economic factors, environmental contaminants in food, and access to healthcare services are all important aspects of public health but do not specifically align with the core aim of the multiple barriers principle, which concentrates on halting the transmission of diseases directly at the host, environment, and agent level.

8. What does the acronym NIOSH stand for?

- A. National Institute for Occupational Safety and Health**
- B. National Industrial Organization for Safety and Health**
- C. National Initiative for Occupational Safety and Hygiene**
- D. National Institute of Safety and Health**

The correct expansion of the acronym NIOSH is "National Institute for Occupational Safety and Health." NIOSH is a federal agency responsible for conducting research and making recommendations for the prevention of work-related injuries and illnesses. It operates under the Centers for Disease Control and Prevention (CDC) and focuses on ensuring safe and healthy working conditions by providing training, education, and guidance based on scientific research. The emphasis on safety and health in the workplace is crucial, as it aims to reduce workplace hazards and promote health standards that can lead to improved worker safety and reduced occupational diseases. By using the term "Occupational," NIOSH highlights its specific mission related to the work environment and the health of workers. The other options do not accurately reflect the name or mission of the agency. For instance, the importance of occupational safety is distinctly identified in the official title, making other variations like "National Industrial Organization for Safety and Health" or "National Initiative for Occupational Safety and Hygiene" misleading and unrelated to NIOSH's primary focus.

9. What is the proper sequence for decontamination of a radioactive spill?

- A. From the most contaminated areas to the least contaminated areas**
- B. From the least contaminated areas to the most contaminated areas**
- C. In random order based on accessibility**
- D. In accordance with contamination levels only**

The proper sequence for decontamination of a radioactive spill is to start from the least contaminated areas and work towards the most contaminated areas. This method is designed to prevent the spread of contamination into clean areas while ensuring that the most contaminated zones are addressed last and more thoroughly. When beginning the decontamination process in the least contaminated areas, any contamination can be effectively contained, reducing the risk of cross-contamination. This systematic approach also allows responders to monitor the levels of contamination as they progress. By first addressing the least contaminated sections, the cleanup teams can establish a clean perimeter and ensure that more contaminated materials do not migrate into previously decontaminated spaces. This method is essential in maintaining safety and control during the decontamination process. Starting with the areas that have the least exposure reduces the chances of spreading contaminants to other locations and makes it easier to manage the decontamination effort overall.

10. What do NSF and USL primarily certify?

- A. Food service equipment**
- B. Medical devices**
- C. Water purification systems**
- D. Industrial machinery**

NSF (National Sanitation Foundation) and USL (Underwriters Laboratories) primarily certify food service equipment to ensure that it meets specific standards for safety and sanitation. This certification process involves rigorous testing to verify that the equipment can be safely used in food preparation and service environments without posing health risks. The focus on food service equipment is crucial because equipment such as ovens, refrigerators, and dishwashers are fundamental in preventing foodborne illnesses and ensuring food safety. By certifying these products, NSF and UL provide assurance to manufacturers, restaurants, and other food service operators that the equipment complies with health regulations and industry standards. Other choices like medical devices, water purification systems, and industrial machinery fall under different certification bodies or standards that are tailored to their specific requirements for safety, performance, and health impact.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://nehaehs.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE