

NCTI Field Tech IV Progression Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. Why is ATM advantageous for multimedia applications?

- A. All cells are the same size**
- B. Cells are small**
- C. ATM runs over fast fiber optics**
- D. All of the above**

2. In data networking, what term describes the characteristics of a transmission link?

- A. Service Quality**
- B. Quality of service (QoS)**
- C. Throughput Measurement**
- D. Link Reliability**

3. Which of the following are two types of domain names?

- A. Relative name and composite name**
- B. Relative name and fully qualified domain name (FQDN)**
- C. Absolute name and fully qualified domain name (FQDN)**
- D. Parent name and child name**

4. At what point does end-to-end delay in a voice conversation generally become unacceptable?

- A. 200 ms**
- B. 300 ms**
- C. 400 ms**
- D. 500 ms**

5. Zones maintain domain name information in which record types?

- A. ALL**
- B. RRs**
- C. TXT**
- D. MX**

6. What is the purpose of the ACK message in TCP?

- A. To confirm receipt of packets**
- B. To initiate a connection**
- C. To terminate a connection**
- D. To request retransmission of lost packets**

7. What is the primary purpose of a Physical Layer protocol?

- A. Encapsulate data into frames**
- B. Transmit bits across a physical link**
- C. Control flow of data**
- D. Translate protocols**

8. Which layer within the TCP/IP model delivers packets to their destination across multiple networks?

- A. Transport Layer**
- B. Internetwork Layer**
- C. Application Layer**
- D. Network Interface Layer**

9. At which OSI layer do switches operate?

- A. Application Layer**
- B. Transport Layer**
- C. Data Link Layer**
- D. Session Layer**

10. Which term describes the time it takes for a packet to move through a network?

- A. Bandwidth**
- B. Latency**
- C. Throughput**
- D. Propagation delay**

Answers

SAMPLE

1. D
2. B
3. B
4. D
5. B
6. A
7. B
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. Why is ATM advantageous for multimedia applications?

- A. All cells are the same size
- B. Cells are small
- C. ATM runs over fast fiber optics
- D. All of the above**

ATM, or Asynchronous Transfer Mode, is particularly advantageous for multimedia applications for several reasons, all of which contribute to its efficiency in handling different types of data streams, such as voice, video, and data. Firstly, the fact that all cells in ATM are the same size is significant because it allows for predictable performance and simplifies the process of switching and routing. When every cell has a uniform size, it ensures that the network can process data streams more uniformly, which is crucial for maintaining quality of service (QoS) in multimedia applications, where timing and ordering are essential. Secondly, the small size of ATM cells plays a critical role. Smaller cells reduce latency, which is vital for real-time communications like video conferencing or voice over IP. They allow faster processing and transmission of data since each cell can be quickly dispatched through the network. This minimizes delays that could disrupt multimedia experiences, providing smoother playback and more reliable connections. Additionally, the ability of ATM to run over fast fiber optics enhances its capabilities for multimedia applications. Fiber optic technology has a much higher bandwidth compared to traditional copper cables, making it possible for ATM to transmit large amounts of data simultaneously without congestion. This higher capacity supports the simultaneous transmission of various types of multimedia content, ensuring that applications

2. In data networking, what term describes the characteristics of a transmission link?

- A. Service Quality
- B. Quality of service (QoS)**
- C. Throughput Measurement
- D. Link Reliability

Quality of service (QoS) is a critical concept in data networking that refers to the overall performance of a transmission link as perceived by the users. It encompasses a variety of factors that determine how effectively data is transmitted over a network. QoS is essential for ensuring that network resources are allocated efficiently, providing a consistent and reliable experience for users, especially in environments where bandwidth is shared among multiple applications. QoS includes measures such as latency, jitter, bandwidth, and packet loss, which all contribute to end-user satisfaction. For example, applications such as video conferencing and VoIP require specific QoS settings to function optimally, which may mean prioritizing their traffic over less sensitive applications during periods of congestion. This understanding of QoS enables network engineers and technicians to design and manage networks that meet the specific needs of applications and service requirements, ensuring high performance even under varying network conditions.

3. Which of the following are two types of domain names?

- A. Relative name and composite name**
- B. Relative name and fully qualified domain name (FQDN)**
- C. Absolute name and fully qualified domain name (FQDN)**
- D. Parent name and child name**

The correct choice highlights two fundamental concepts in networking—relative names and fully qualified domain names (FQDN). A relative name typically refers to a domain name that is not complete in terms of its hierarchy and context within the domain system. It is often used within the environment of a specific context, meaning it relies on the existing domain structure to be understood fully. For example, if you are accessing a website within a specified domain environment, you might only need to use a relative name to indicate that host. In contrast, a fully qualified domain name (FQDN) is the complete address that specifies a particular server or host within the entire hierarchy of the Domain Name System (DNS). It includes the complete path from the root domain down to the specific host, ensuring that it can be resolved in the broader internet infrastructure without ambiguity. An example of an FQDN is "www.example.com," which clearly indicates both the specific host and the domain it belongs to. Understanding these types of domain names is crucial for navigating and configuring networking environments effectively, particularly in tasks such as domain resolution and server configuration, where clarity about the exact address is essential.

4. At what point does end-to-end delay in a voice conversation generally become unacceptable?

- A. 200 ms**
- B. 300 ms**
- C. 400 ms**
- D. 500 ms**

In a voice conversation, end-to-end delay refers to the total time taken for a voice packet to travel from the sender to the receiver and for the receiver's response to be sent back. Generally, for a conversation to feel natural and fluid, there are thresholds for what constitutes an acceptable delay. The acceptable end-to-end delay for voice conversations is widely considered to be around 150 ms to 250 ms. Delays beyond this threshold can start to cause issues such as increased talk-over and interruptions between speakers, as well as affecting the overall experience of the conversation. When delay reaches approximately 400 ms, it becomes increasingly noticeable, leading to problems such as awkward pauses in conversation where neither participant knows when the other has finished speaking. At 500 ms, the delay is typically deemed unacceptable for real-time communication, resulting in significant negative impacts on the quality of interaction, making it difficult for participants to maintain a natural conversation flow. Thus, the threshold of 500 ms is widely recognized as unacceptable for voice communication, as it introduces significant latency that disrupts the conversational dynamics.

5. Zones maintain domain name information in which record types?

- A. ALL
- B. RRs**
- C. TXT
- D. MX

The correct choice indicates that zones maintain domain name information primarily in Resource Records (RRs). Resource Records are fundamental components of the Domain Name System (DNS) that store various types of information about a domain. Each type of record, such as A (Address), CNAME (Canonical Name), and other specialized record types, serves specific purposes related to the domain names, providing essential details needed for DNS resolution. In the context of zone files, Resource Records encapsulate a wealth of information including but not limited to IP addresses, mappings between domain names, and other attributes necessary for routing and resolving names to the relevant services on the internet. This organization ensures that when a request for a domain name is made, the corresponding information can be retrieved efficiently. While TXT and MX records are indeed types of Resource Records, they are specialized for specific tasks - with TXT records storing arbitrary text data, often used for verification purposes, and MX records specifically catering to mail exchange functionality. However, the option that encompasses the broadest category for maintaining domain name information across the DNS is the designation of Resource Records as a whole. This makes Resource Records the essential building blocks for all other DNS records, thus supporting the assertion that zones maintain domain name information in these record types.

6. What is the purpose of the ACK message in TCP?

- A. To confirm receipt of packets**
- B. To initiate a connection
- C. To terminate a connection
- D. To request retransmission of lost packets

The purpose of the ACK (Acknowledgment) message in TCP (Transmission Control Protocol) is primarily to confirm receipt of packets. When a sender transmits data, the receiving end sends back an ACK message to the sender, indicating that the packets have been received successfully. This acknowledgment is crucial for maintaining the reliability of data transmission over TCP. The TCP protocol relies on acknowledgments to ensure that data is delivered accurately and in the correct order. If the sender does not receive an acknowledgment within a specified time frame, it assumes that the packets may have been lost during transit, prompting it to retransmit the data. This process helps to manage flow control and congestion on the network, ensuring a robust communication channel. In contrast, while other functions such as initiating a connection (which is handled by the SYN message), terminating a connection (involving FIN messages), or handling lost packets may be essential for the overall operation of TCP, the specific role of the ACK message is to confirm that the recipient has received the data sent.

7. What is the primary purpose of a Physical Layer protocol?

- A. Encapsulate data into frames**
- B. Transmit bits across a physical link**
- C. Control flow of data**
- D. Translate protocols**

The primary purpose of a Physical Layer protocol is to transmit bits across a physical link. This layer is the lowest layer in the OSI (Open Systems Interconnection) model and is responsible for the actual physical connection between devices. It defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating the physical link. This includes the format of the signal, such as voltage levels and timing, ensuring that data can traverse the medium, whether it be copper wire, fiber-optic, or wireless. In contrast, encapsulating data into frames involves higher layers of the OSI model, such as the Data Link Layer, where data is packaged for transmission. Controlling the flow of data is typically the role of the Transport Layer, which manages data transmission reliability and can prevent overwhelming a receiver. Translating protocols falls under the Application Layer, where data is made meaningful for end-users and applications rather than focusing on the physical transfer of bits. Thus, the essential function of the Physical Layer is the transmission of raw bit streams between devices, making it fundamental for all subsequent data communication.

8. Which layer within the TCP/IP model delivers packets to their destination across multiple networks?

- A. Transport Layer**
- B. Internetwork Layer**
- C. Application Layer**
- D. Network Interface Layer**

The Internetwork Layer is responsible for delivering packets across multiple networks in the TCP/IP model. This layer manages the routing of data packets from the source network through various intermediate networks to reach the destination, ensuring that the packets are correctly directed through routers. In this layer, protocols such as Internet Protocol (IP) are utilized, which provides the necessary addressing and routing functionalities. The layer also handles fragmentation and reassembly of packets to accommodate different transmission sizes across varying network technologies. This capability is essential for enabling communication between devices located in different subnetworks or across wide area networks (WANs). While other layers have their specific roles—such as the Transport Layer managing end-to-end communication and ensuring data integrity, the Application Layer focusing on user interfaces and application services, and the Network Interface Layer dealing with hardware addressing and the actual transmission of frames over a physical medium—none of them are involved in the inter-network packet delivery across multiple networks like the Internetwork Layer.

9. At which OSI layer do switches operate?

- A. Application Layer
- B. Transport Layer
- C. Data Link Layer**
- D. Session Layer

Switches primarily operate at the Data Link Layer of the OSI model, which is Layer 2. This layer is responsible for node-to-node data transfer and provides the protocols that allow for error detection and correction in the frame delivery process between directly connected devices. In this context, switches utilize MAC (Media Access Control) addresses to forward frames to the correct destination within a local area network (LAN). By examining these MAC addresses, switches create and maintain a MAC address table that helps in efficiently directing traffic without unnecessary broadcasting. The other layers mentioned do not align with the functioning of switches. For instance, the Application Layer deals with high-level protocols and user interfaces, the Transport Layer is concerned with end-to-end communication and error recovery, and the Session Layer manages sessions between applications. Therefore, placing switches within the context of these other layers would misrepresent their core functionality in networking.

10. Which term describes the time it takes for a packet to move through a network?

- A. Bandwidth
- B. Latency**
- C. Throughput
- D. Propagation delay

The term that describes the time it takes for a packet to move through a network is latency. Latency refers to the delay that occurs in the network when a packet is sent from the source to the destination. This delay can be caused by various factors, including the time it takes for the packet to be processed by routers and switches, the distance the packet must travel, and any queuing that occurs in the network. Understanding latency is crucial in networking because it impacts the performance of applications, especially those requiring real-time communication, such as video conferencing or online gaming. Low latency is desirable as it leads to a more responsive user experience. While bandwidth refers to the maximum amount of data that can be transmitted over a network in a given amount of time, and throughput denotes the actual amount of data successfully transmitted over the network, these terms focus more on capacity and efficiency rather than the time aspect. Propagation delay, on the other hand, is one specific component that can contribute to latency; it specifically refers to the time it takes for a signal to travel from the sender to the receiver, which is just one part of the overall latency in a network.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://nctifieldtech4progression.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE