

NCSF ACPT Section II: Exercise Physiology Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which type of muscle fibers are more fatigue-resistant and have a high capacity for aerobic metabolism?**
 - A. Type II (fast-twitch) fibers**
 - B. Type III fibers**
 - C. Type I (slow-twitch) fibers**
 - D. Type IV fibers**

- 2. What adaptations occur in the cardiovascular system with endurance training?**
 - A. Greater stroke volume and increased resting heart rate**
 - B. Lower resting heart rate and reduced blood flow**
 - C. Greater stroke volume, lower resting heart rate, and enhanced blood flow**
 - D. Decreased cardiac output**

- 3. What impact does exercise have on muscle function as we age?**
 - A. It causes muscle weakness**
 - B. It maintains muscle function**
 - C. It leads to increased stiffness**
 - D. It accelerates aging effects**

- 4. What is the minimal rest interval needed between squats using 3RM intensity to ensure adequate recovery?**
 - A. 30 seconds**
 - B. 60 seconds**
 - C. 90 seconds**
 - D. 180 seconds**

- 5. How does exercise impact bone mineral density?**
 - A. It decreases bone density**
 - B. It has no effect on bone density**
 - C. It helps maintain bone mineral density**
 - D. It only affects muscle density**

6. What is the role of cortisol during exercise?

- A. To promote fat storage**
- B. To help mobilize energy stores and manage stress during physical performance**
- C. To enhance aerobic capacity**
- D. To reduce muscle soreness**

7. What is the primary physiological reason for muscle soreness after intense exercise?

- A. Lactic acid accumulation**
- B. Micro-tears in muscle fibers leading to inflammation**
- C. Excessive hydration**
- D. Increased muscle temperature**

8. What is the role of creatine phosphate in muscle metabolism?

- A. It inhibits ATP production during rest**
- B. It donates a phosphate to ADP to quickly regenerate ATP**
- C. It breaks down fat for energy**
- D. It absorbs excess oxygen during exercise**

9. What is the function of the glycolytic system during exercise?

- A. To produce ATP through aerobic oxidation**
- B. To produce ATP through anaerobic breakdown of glucose**
- C. To enhance muscle recovery**
- D. To store energy for future use**

10. During which type of exercise is anaerobic metabolism primarily used?

- A. Prolonged jogging.**
- B. Heavy lifting for low repetitions.**
- C. Walking.**
- D. Endurance cycling.**

Answers

SAMPLE

1. C
2. C
3. B
4. D
5. C
6. B
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Which type of muscle fibers are more fatigue-resistant and have a high capacity for aerobic metabolism?

- A. Type II (fast-twitch) fibers**
- B. Type III fibers**
- C. Type I (slow-twitch) fibers**
- D. Type IV fibers**

Type I muscle fibers, commonly known as slow-twitch fibers, are particularly known for their high resistance to fatigue and their robust capacity for aerobic metabolism. These fibers are adapted for endurance activities due to several key characteristics. They have a rich supply of blood, a high concentration of mitochondria, and an extensive network of capillaries, allowing for efficient oxygen delivery and utilization during prolonged exercise. The high aerobic capacity of Type I fibers enables them to sustain activity over longer periods without fatiguing quickly, making them ideal for activities such as distance running or cycling, where endurance is crucial. They primarily use aerobic pathways to generate ATP, which involves the oxidation of carbohydrates and fats, providing a steady energy supply during extended bouts of exercise. In contrast, fast-twitch fibers, such as Type II fibers, are primarily geared towards short bursts of power and strength, relying more on anaerobic metabolism, which produces energy quickly but is not sustainable for long periods. This significant difference is what sets Type I fibers apart in terms of fatigue resistance and aerobic capacity. Other fiber types mentioned, such as Type III and IV, are not commonly recognized designations in the traditional classification of muscle fibers and do not refer to distinct physiological properties that relate to endurance and fatigue resistance in

2. What adaptations occur in the cardiovascular system with endurance training?

- A. Greater stroke volume and increased resting heart rate**
- B. Lower resting heart rate and reduced blood flow**
- C. Greater stroke volume, lower resting heart rate, and enhanced blood flow**
- D. Decreased cardiac output**

Endurance training leads to several key adaptations in the cardiovascular system that enhance overall cardiovascular efficiency and performance. One of the primary adaptations is an increase in stroke volume, which refers to the amount of blood the heart pumps with each beat. With regular endurance training, the heart becomes stronger and more efficient, allowing it to pump more blood per contraction. This increase in stroke volume means that the heart doesn't have to beat as often to maintain adequate cardiac output during exercise and at rest. Additionally, endurance training typically results in a lower resting heart rate. As the cardiovascular system becomes more efficient, the heart can maintain adequate circulation with fewer beats per minute. A lower resting heart rate is often an indicator of improved cardiovascular fitness and is a common adaptation observed in well-trained endurance athletes. Enhanced blood flow is another benefit of endurance training. With consistent aerobic exercise, there is often an increase in capillary density in the muscles, which improves the delivery of oxygen and nutrients while promoting better waste removal. This increased blood flow supports both exercise performance and recovery. Overall, the combination of greater stroke volume, lower resting heart rate, and enhanced blood flow contributes to the improved endurance and efficiency of the cardiovascular system, aligning with the physiological adaptations associated with endurance training.

3. What impact does exercise have on muscle function as we age?

- A. It causes muscle weakness
- B. It maintains muscle function**
- C. It leads to increased stiffness
- D. It accelerates aging effects

Engaging in regular exercise has a significant positive impact on muscle function as we age. As individuals grow older, they often experience a natural decline in muscle mass and strength, a process known as sarcopenia. However, consistent physical activity, particularly resistance training and aerobic exercises, can help maintain muscle function by stimulating muscle protein synthesis, promoting neuromuscular adaptations, and enhancing overall muscle strength and endurance. Exercise also plays a crucial role in improving mobility, balance, and coordination, which are vital for maintaining independence in older adults. It can counteract the negative effects of aging on the musculoskeletal system, helping to preserve functionality and reduce the risk of falls and injuries. Furthermore, engaging in regular exercise supports metabolic health, improves cardiovascular function, and boosts overall body composition, contributing to enhanced muscle health. Therefore, through various physiological mechanisms and adaptations, exercise serves to maintain, rather than diminish, muscle function in aging individuals.

4. What is the minimal rest interval needed between squats using 3RM intensity to ensure adequate recovery?

- A. 30 seconds
- B. 60 seconds
- C. 90 seconds
- D. 180 seconds**

For heavy resistance training, particularly when engaging in exercises like squats at a 3-repetition maximum (3RM) intensity, sufficient recovery time between sets is crucial for optimal performance and safety. The minimal rest interval needed is largely determined by the intensity of the exercise and the overall demand it places on the body. A 3RM intensity signifies that you are lifting a weight that is near the maximum you can handle for only three repetitions. This level of exertion creates significant physiological stress on the muscles, nervous system, and energy systems, particularly the phosphagen system, which fuels high-intensity, short-duration activities. The body requires time to recover both metabolically and mechanically. During intense lifting, energy stores are depleted, and muscle fibers may need time to clear lactate and other metabolic byproducts. Additionally, the nervous system also requires adequate time to recuperate to sustain high levels of force production in subsequent sets. Research suggests that a rest interval of around 180 seconds (3 minutes) is generally recommended when training with very high intensities like 3RM. This duration allows for the partial restoration of phosphocreatine levels in the muscles, which is essential for power output, as well as increased recovery of the nervous system. By allowing

5. How does exercise impact bone mineral density?

- A. It decreases bone density
- B. It has no effect on bone density
- C. It helps maintain bone mineral density**
- D. It only affects muscle density

Exercise plays a significant role in maintaining and improving bone mineral density, particularly weight-bearing and resistance training activities. When you engage in these types of exercise, the mechanical loading exerted on the bones stimulates bone remodeling processes, where old bone is replaced with new bone tissue. This adaptation helps to maintain or potentially increase bone density, particularly in individuals who are at risk for osteoporosis or age-related bone density loss. Weight-bearing exercises, such as running, walking, or jumping, require the bones to support the body's weight, leading to stress that triggers bone strengthening. Additionally, resistance training not only targets muscle strength but also contributes to increasing bone density by improving the strength of the muscles and surrounding connective tissues, which can help to stimulate bone formation and inhibit bone resorption. As a result, regular physical activity, especially in the form of these exercises, is fundamentally important for sustaining healthy bone density throughout one's life. This is particularly relevant as individuals age, as bone density tends to decrease naturally over time without the stimulus provided by physical activity.

6. What is the role of cortisol during exercise?

- A. To promote fat storage
- B. To help mobilize energy stores and manage stress during physical performance**
- C. To enhance aerobic capacity
- D. To reduce muscle soreness

Cortisol plays a crucial role during exercise primarily by helping to mobilize energy stores and manage the stress response associated with physical performance. When you engage in exercise, especially intense or prolonged activity, cortisol is released from the adrenal glands. This hormone facilitates the breakdown of macronutrients for energy, particularly by promoting gluconeogenesis (the generation of glucose from non-carbohydrate sources) and the mobilization of fatty acids from adipose tissue. This mobilization is vital as it provides the necessary energy substrates for working muscles, especially when glycogen stores may be depleted during extended exercise. Additionally, cortisol assists in regulating metabolism and controlling inflammation, which is important for recovery after exercise as well. In contrast, while fat storage is primarily regulated by insulin, cortisol's role leans more towards energy release rather than storage. The enhancement of aerobic capacity is more closely related to adaptations from consistent training, and the reduction of muscle soreness is a process influenced by other factors, such as post-exercise recovery strategies rather than a direct function of cortisol.

7. What is the primary physiological reason for muscle soreness after intense exercise?

- A. Lactic acid accumulation
- B. Micro-tears in muscle fibers leading to inflammation**
- C. Excessive hydration
- D. Increased muscle temperature

The primary physiological reason for muscle soreness after intense exercise is micro-tears in muscle fibers leading to inflammation. When muscles are subjected to intense activity, particularly when performing eccentric movements (where muscles lengthen under tension), small tears can occur in the muscle fibers. This process is a normal and necessary response to exercise, as it helps to stimulate muscle repair and growth. As these micro-tears occur, they trigger an inflammatory response. The body sends various biochemical signals to the injured area, which leads to increased blood flow and the activation of the immune system to help repair the damage. This repair process contributes to the sensation of muscle soreness known as delayed onset muscle soreness (DOMS), which typically peaks 24 to 72 hours after exercise. Contrarily, lactic acid accumulation can occur during intense exercise and may lead to temporary muscle fatigue, but it is not the primary cause of soreness after the fact, as lactic acid is generally cleared from the muscles relatively quickly after exercise. Excessive hydration does not contribute to muscle soreness and, in fact, proper hydration is important for muscle function and recovery. Similarly, while increased muscle temperature occurs during exercise, this is a normal physiological response, and does not directly relate to post-exercise muscle soreness.

8. What is the role of creatine phosphate in muscle metabolism?

- A. It inhibits ATP production during rest
- B. It donates a phosphate to ADP to quickly regenerate ATP**
- C. It breaks down fat for energy
- D. It absorbs excess oxygen during exercise

Creatine phosphate plays a crucial role in muscle metabolism, particularly during short bursts of high-intensity exercise. Its primary function is to donate a phosphate group to adenosine diphosphate (ADP), which facilitates the rapid regeneration of adenosine triphosphate (ATP). ATP is the primary energy carrier in muscle cells, and its availability is essential for muscle contraction and various metabolic activities. During intense exercise, ATP stores can become depleted quickly. The Phosphagen system, which relies on creatine phosphate, steps in to replenish ATP efficiently. This process allows for continued muscle contraction during short, intense efforts, such as sprinting or heavy lifting, where the energy demands are sudden and significant. Other options describe functions that are not aligned with creatine phosphate's role in muscle metabolism. Creatine phosphate does not inhibit ATP production, nor does it break down fat for energy or absorb excess oxygen. Instead, it serves as a rapid source of phosphate to maintain ATP levels, ensuring that energy supply meets the demands of high-intensity muscular activity.

9. What is the function of the glycolytic system during exercise?

- A. To produce ATP through aerobic oxidation
- B. To produce ATP through anaerobic breakdown of glucose**
- C. To enhance muscle recovery
- D. To store energy for future use

The glycolytic system serves a crucial role in exercise physiology by producing ATP through the anaerobic breakdown of glucose. This process occurs in the cytoplasm of muscle cells and initiates when the body requires a rapid supply of energy during high-intensity activities that last from approximately 10 seconds to 2 minutes, such as sprinting or weightlifting. During this anaerobic pathway, glucose is degraded into pyruvate, leading to the production of ATP. This is significant because it allows for quick energy production without the immediate requirement for oxygen. When oxygen levels are insufficient, the pyruvate can be converted into lactate, which can temporarily accumulate and contribute to muscle fatigue, but it allows for continued ATP production during intensive bursts of exercise. The other options reflect different energy systems or physiological processes. Aerobic oxidation (related to the first choice) occurs primarily in the oxidative system, which takes over during longer-duration, lower-intensity exercise when oxygen is readily available. Options related to muscle recovery and energy storage pertain more to different physiological functions rather than the immediate ATP production role of the glycolytic system during exercise. Thus, the main function of the glycolytic system in this context is, indeed, the anaerobic breakdown of glucose to produce ATP.

10. During which type of exercise is anaerobic metabolism primarily used?

- A. Prolonged jogging.
- B. Heavy lifting for low repetitions.**
- C. Walking.
- D. Endurance cycling.

Anaerobic metabolism is primarily utilized during activities that involve short bursts of high-intensity effort. Heavy lifting for low repetitions is a perfect example of such exercise, as it requires immediate and intense energy output that exceeds what can be supplied through aerobic pathways. During this type of exercise, the body primarily relies on the phosphagen system, which uses stored ATP and creatine phosphate for quick energy. This system can sustain high-level performance for short durations, typically around 10 seconds to 30 seconds. Once the intensity is reduced or the duration extended, the body would then shift to aerobic metabolism for sustained energy, which is not the case during heavy lifting where each repetition involves maximal effort. Other options, such as prolonged jogging, walking, and endurance cycling, predominantly involve aerobic metabolism, which utilizes oxygen to produce energy over longer periods of time, making them less reliant on anaerobic pathways compared to heavy lifting.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ncsfacptsec2exercisephysiology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE