

NCLEX Neurologic and Sensory Systems Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. In which condition is the “flicker” test used for diagnosis?**
 - A. Cerebellar ataxia
 - B. Vestibular disorders
 - C. Multiple sclerosis
 - D. Parkinson's disease

- 2. Which condition is characterized by sudden, severe episodes of dizziness?**
 - A. Benign Paroxysmal Positional Vertigo (BPPV)
 - B. Meniere's disease
 - C. Vestibular neuritis
 - D. Labyrinthitis

- 3. How do you assess for the presence of the Babinski reflex?**
 - A. By squeezing the toes
 - B. By stroking the sole of the foot and observing the reaction of the toes
 - C. By having the person close their eyes and count to ten
 - D. By tapping the knee and checking the leg's response

- 4. What type of seizure is characterized by staring spells and subtle body movements?**
 - A. Grand mal seizure
 - B. Absence seizure
 - C. Tonic-clonic seizure
 - D. Focal seizure

- 5. What would you expect to observe in a patient with increased ICP in terms of pupil responses?**
 - A. Bilaterally dilated pupils
 - B. Constricted pupils
 - C. Pupil reactivity with normal size
 - D. Inequality in pupil size

6. What is the primary function of the brainstem?

- A. Processing emotions**
- B. Regulating basic life functions like breathing and heart rate**
- C. Integrating sensory information**
- D. Coordinating voluntary movements**

7. What is a common symptom of a stroke?

- A. Sudden shortness of breath**
- B. Severe chest pain**
- C. Facial drooping**
- D. Frequent urination**

8. What symptoms are indicative of a traumatic brain injury (TBI)?

- A. Shortness of breath and chest pain**
- B. Confusion, headache, dizziness, and changes in consciousness**
- C. Nausea and vomiting**
- D. Fever and fatigue**

9. During assessment, which arm and leg posture indicates decerebrate posturing?

- A. Arms are flexed and legs extended**
- B. Arms extended straight out and toes pointed downward**
- C. Arms and legs flexed**
- D. Flaccid posture with no movement**

10. What visual field defects are commonly caused by lesions in the occipital lobe?

- A. Monocular blindness**
- B. Homonymous hemianopia and quadrantanopia**
- C. Scotomas and night blindness**
- D. Peripheral vision loss**

Answers

SAMPLE

1. B
2. A
3. B
4. B
5. D
6. B
7. C
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. In which condition is the “flicker” test used for diagnosis?

- A. Cerebellar ataxia**
- B. Vestibular disorders**
- C. Multiple sclerosis**
- D. Parkinson's disease**

The “flicker” test is utilized in the diagnosis of vestibular disorders. This test is designed to assess the function of the vestibular system, which is responsible for maintaining balance and spatial orientation. The flicker test evaluates the response of the vestibular system to rapid changes in visual stimuli, which can help identify any dysfunction in this system. In vestibular disorders, patients may experience symptoms such as vertigo, dizziness, and balance problems. The flicker test can help clinicians pinpoint the presence and extent of vestibular dysfunction, thereby aiding in the diagnosis and management of conditions affecting the inner ear and the pathways involved in balance. Other conditions like cerebellar ataxia, multiple sclerosis, and Parkinson's disease have different diagnostic tests and criteria. While these conditions can also affect balance and coordination, they are typically assessed through other means, such as neurological examinations or imaging studies, rather than specifically through the flicker test.

2. Which condition is characterized by sudden, severe episodes of dizziness?

- A. Benign Paroxysmal Positional Vertigo (BPPV)**
- B. Meniere's disease**
- C. Vestibular neuritis**
- D. Labyrinthitis**

The condition characterized by sudden, severe episodes of dizziness is Benign Paroxysmal Positional Vertigo (BPPV). BPPV is specifically caused by changes in the position of the head, leading to brief but intense episodes of vertigo. It occurs when tiny calcium carbonate crystals, called otoconia, become dislodged from their usual location in the inner ear and migrate into one of the semicircular canals. This abnormal stimulus to the balance system results in the sensation of spinning (or vertigo) when the head is moved in certain positions. In contrast, Meniere's disease includes additional symptoms such as ear fullness, tinnitus, and fluctuating hearing loss, which are not limited to sudden episodes of dizziness alone. Vestibular neuritis is typically characterized by severe dizziness or vertigo that can last for days, but it doesn't have the positional triggers of BPPV. Labyrinthitis, while it can cause dizziness, usually occurs following an infection, leading to prolonged and more severe symptoms because it affects the inner ear more broadly rather than being triggered by specific movements. Thus, BPPV's hallmark feature of sudden, positional vertiginous episodes distinguishes it from other conditions affecting balance and dizziness.

3. How do you assess for the presence of the Babinski reflex?

- A. By squeezing the toes
- B. By stroking the sole of the foot and observing the reaction of the toes**
- C. By having the person close their eyes and count to ten
- D. By tapping the knee and checking the leg's response

The Babinski reflex is assessed by stroking the sole of the foot and observing the reaction of the toes. This reflex is a significant indicator of neurological function, particularly in infants and young children, but its presence or absence in adults can suggest various neurological conditions. When you stroke the lateral aspect of the foot's sole, the normal response in infants up to about 2 years of age is for the toes to fan out and the big toe to extend, which is known as the positive Babinski sign. In contrast, the typical response in older children and adults is for the toes to curl downwards, indicating normal neurological function. Therefore, observing the toe movement after this specific stimulus provides vital information about the central nervous system's integrity. This assessment helps medical professionals evaluate the pathways in the nervous system that are responsible for reflexes and the overall functioning of the brain and spinal cord. The other options do not involve the proper methodology for assessing the Babinski reflex, and thus do not yield relevant neurological insight.

4. What type of seizure is characterized by staring spells and subtle body movements?

- A. Grand mal seizure
- B. Absence seizure**
- C. Tonic-clonic seizure
- D. Focal seizure

The type of seizure characterized by staring spells and subtle body movements is the absence seizure. This type of seizure, often seen in children, is typically brief and involves a sudden stop in activity and a loss of awareness. During an absence seizure, the individual may appear to be staring into space for several seconds and may exhibit subtle body movements such as eye blinking or lip smacking. These episodes can occur multiple times a day and often go unnoticed because they are so brief and may happen during everyday activities. By contrast, grand mal seizures, also known as tonic-clonic seizures, involve a loss of consciousness, convulsions, and muscle rigidity. Tonic seizures typically include sustained muscle contractions and may not exhibit the subtle movements seen in absence seizures. Focal seizures are localized and can have varied manifestations depending on the area of the brain affected, often resulting in more pronounced motor symptoms or altered consciousness. Overall, absence seizures are uniquely defined by their subtle presentation, which includes periods of unresponsiveness and minor movements, setting them apart from the other types of seizures.

5. What would you expect to observe in a patient with increased ICP in terms of pupil responses?

- A. Bilaterally dilated pupils**
- B. Constricted pupils**
- C. Pupil reactivity with normal size**
- D. Inequality in pupil size**

Increased intracranial pressure (ICP) can affect pupil responses significantly due to the pressure exerted on cranial nerves, especially the oculomotor nerve. When ICP rises, it can lead to a condition known as "herniation," where brain tissue is pushed from its normal position. This pressure can alter the function of the nerves that control pupil size and reactivity. Observing inequality in pupil size, also known as anisocoria, is common in patients with increased ICP. The affected nerve may struggle to control the muscle that constricts the pupil, leading to one pupil being larger than the other. This is a significant clinical finding that may indicate severe neurological distress or potential brain herniation. In contrast, bilaterally dilated pupils often suggest a different underlying issue, such as systemic effects from drugs or metabolic disturbances rather than localized increased ICP. Constricted pupils would typically indicate other pathophysiological processes, such as opioid overdose or a response to certain medications. Normal-size pupils with reactivity would imply that ICP is within normal limits or that the brain and cranial nerves are functioning properly, which is not consistent with the scenario of increased ICP. Hence, the observation of unequal pupil size aligns with the expected neurological signs associated

6. What is the primary function of the brainstem?

- A. Processing emotions**
- B. Regulating basic life functions like breathing and heart rate**
- C. Integrating sensory information**
- D. Coordinating voluntary movements**

The primary function of the brainstem is indeed to regulate basic life functions such as breathing and heart rate. The brainstem serves as a vital control center for many autonomic functions that are crucial for survival. It encompasses the midbrain, pons, and medulla oblongata, each of which plays an essential role in maintaining these essential life-sustaining processes. For example, the medulla oblongata is directly responsible for controlling automatic functions like respiration, heart rate, blood pressure, and swallowing reflexes. It ensures that these processes are carried out without conscious effort, allowing the body to maintain homeostasis. Additionally, the pons contains pathways that relay signals between different parts of the nervous system, further aiding in the regulation of functions such as respiration. While the brain is involved in processing emotions, integrating sensory information, and coordinating voluntary movements, these functions are primarily associated with other areas of the brain, such as the limbic system for emotions, the thalamus and cerebral cortex for sensory integration, and the cerebellum for coordination of movements. Therefore, the brainstem's critical role in life-sustaining bodily functions distinguishes it as the main focus of this question.

7. What is a common symptom of a stroke?

- A. Sudden shortness of breath
- B. Severe chest pain
- C. Facial drooping**
- D. Frequent urination

Facial drooping is a classic and commonly recognized symptom of a stroke. It often occurs when there is a disruption in blood flow to the brain, particularly in the areas responsible for controlling facial muscles. This might manifest as unevenness in the smile or difficulty closing one eye. Recognizing facial drooping is essential in the assessment of a stroke, as it is part of the FAST acronym (Face, Arms, Speech, Time) used to identify stroke symptoms quickly. Other symptoms commonly associated with a stroke might include weakness on one side of the body, difficulty speaking, or sudden changes in vision, but facial drooping specifically highlights the immediate impact on facial muscle control, making it a crucial indicator for prompt medical evaluation.

8. What symptoms are indicative of a traumatic brain injury (TBI)?

- A. Shortness of breath and chest pain
- B. Confusion, headache, dizziness, and changes in consciousness**
- C. Nausea and vomiting
- D. Fever and fatigue

The symptoms indicative of a traumatic brain injury (TBI) include confusion, headache, dizziness, and changes in consciousness. These symptoms arise due to the impact of an external force causing injury to the brain. Confusion can manifest as difficulty in thinking clearly or maintaining attention, while headaches often result from internal bleeding or swelling. Dizziness might occur due to disturbances in the brain's mechanisms for balance and coordination. Changes in consciousness range from mild disorientation to complete loss of awareness, which can signify varying degrees of TBI severity. While other options might describe symptoms associated with different conditions, they do not directly correlate with the typical clinical manifestations of TBI. Shortness of breath and chest pain are more commonly associated with cardiorespiratory issues. Nausea and vomiting may occur due to a variety of reasons, including gastrointestinal disturbances or severe headaches, but they are not specific hallmarks of TBI. Fever and fatigue can indicate systemic infections or other health issues rather than a direct indicator of brain injury. Therefore, the combination of confusion, headache, dizziness, and changes in consciousness is crucial for recognizing TBI and guiding appropriate medical intervention.

9. During assessment, which arm and leg posture indicates decerebrate posturing?

- A. Arms are flexed and legs extended**
- B. Arms extended straight out and toes pointed downward**
- C. Arms and legs flexed**
- D. Flaccid posture with no movement**

Decerebrate posturing is characterized by an abnormal body posture that occurs when there is severe damage to the brain, typically indicating a more serious injury than other postures like decorticate posturing. The hallmark of decerebrate posture is the extension of the arms and legs, with the arms being held straight out and the toes pointed downward. This position occurs due to damage to the brainstem, resulting in increased rigidity and extension of the limbs. This posture generally indicates a poor prognosis, as it suggests significant impairment in the brain's ability to regulate movement. Other forms of posturing, such as flexed arms and extended legs, indicate different levels and types of brain injury. Understanding the differences between these postures is crucial for assessing the level of neurological function and determining appropriate interventions.

10. What visual field defects are commonly caused by lesions in the occipital lobe?

- A. Monocular blindness**
- B. Homonymous hemianopia and quadrantanopia**
- C. Scotomas and night blindness**
- D. Peripheral vision loss**

Lesions in the occipital lobe primarily affect the visual processing centers of the brain, which are responsible for interpreting visual information received from the eyes. When these areas are damaged, it leads to specific types of visual field defects. Homonymous hemianopia refers to the loss of half of the visual field in both eyes, where the same side is affected for each eye, typically resulting from lesions in the visual pathways that occur after the optic chiasm—often in the occipital lobe. Similarly, quadrantanopia is a loss of vision in a quarter of the visual field and can also arise from damage to the occipital lobe, as the processing of visual information is disrupted in these regions. This type of damage contrasts with other visual field defects, which have different underlying causes. For instance, monocular blindness reflects issues with the eye itself or the optic nerve before the optic chiasm, while scotomas represent localized vision loss that might result from conditions affecting the retina or visual pathways before reaching the occipital lobe. Peripheral vision loss is often associated with other types of neurological issues or eye diseases, which are not directly related to occipital lobe lesions. In summary, the correct answer emphasizes

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://nclexneurologicsensorysys.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE