

NCFE Physical Science Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. In SI units, work is measured in which unit?**
 - A. joules (J)
 - B. watts (W)
 - C. calories (cal)
 - D. newtons (N)

- 2. Which of the following is a characteristic of scalar quantities?**
 - A. Described by magnitude and direction
 - B. Described by magnitude alone
 - C. Always positive values
 - D. Must have a reference point

- 3. What does a circuit diagram represent?**
 - A. The physical appearance of the circuit
 - B. The path of current flow in a circuit
 - C. The power output of a circuit
 - D. The type of components used in the circuit

- 4. What is a lever?**
 - A. A rigid bar that is anchored at one point
 - B. A rotating wheel that moves around an axis
 - C. A flexible beam that bends under stress
 - D. A device that amplifies sound waves

- 5. What is an oxidation number?**
 - A. The number of protons in an atom
 - B. The charge of an element when it stands alone
 - C. The total number of electrons in an atom
 - D. The atomic mass of an element

- 6. Which type of speed varies with time and is not constant?**
 - A. Constant speed
 - B. Average speed
 - C. Instantaneous speed
 - D. Acceleration

7. How does heat transfer occur?

- A. Only through conduction**
- B. Via electromagnetic waves only**
- C. By convection and conduction only**
- D. Due to a temperature difference between objects**

8. What describes the amplitude of a wave?

- A. The distance between the peaks**
- B. The maximum distance from the rest position to the crest or trough**
- C. The time taken for one cycle of the wave**
- D. The speed at which the wave travels**

9. What does luster refer to in terms of physical properties?

- A. The heaviness of a material**
- B. The shininess or reflectivity of a substance**
- C. The chemical reactivity of a substance**
- D. The ability of a material to dissolve in water**

10. Which of the following statements correctly identifies melting?

- A. Liquid to solid transition**
- B. Solid to liquid transition**
- C. Gas to liquid transition**
- D. Liquid to gas transition**

Answers

SAMPLE

1. A
2. B
3. B
4. A
5. B
6. C
7. D
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. In SI units, work is measured in which unit?

- A. joules (J)**
- B. watts (W)**
- C. calories (cal)**
- D. newtons (N)**

Work is measured in joules (J) in the International System of Units (SI). A joule is defined as the amount of work done when a force of one newton is applied over a distance of one meter in the direction of the force. This unit captures both the concept of force, measured in newtons, and displacement, measured in meters, allowing for a clear representation of work as the product of these two factors. In comparison with the other units provided: watts (W) measures power, which is the rate of doing work; calories (cal) are often used in dietary contexts but are not standard SI units for work; and newtons (N) describe force rather than work itself. Therefore, relying on the definition and relationships between these concepts, joules emerge as the appropriate unit for measuring work in SI.

2. Which of the following is a characteristic of scalar quantities?

- A. Described by magnitude and direction**
- B. Described by magnitude alone**
- C. Always positive values**
- D. Must have a reference point**

A characteristic of scalar quantities is that they are described by magnitude alone. Scalars are measurements that only have size or amount, without any associated direction. For instance, when you say the temperature is 30 degrees Celsius, it conveys just the amount without any directional implication. In physics, scalar quantities include things like mass, temperature, and distance, which are fully described by their numerical value. Unlike vector quantities, which involve both magnitude and direction (such as velocity or force), scalars remain straightforward, focusing solely on numerical representation. This singular nature makes scalar quantities essential in many calculations in physical science, where directionality may not be relevant.

3. What does a circuit diagram represent?

- A. The physical appearance of the circuit
- B. The path of current flow in a circuit**
- C. The power output of a circuit
- D. The type of components used in the circuit

A circuit diagram serves as a visual representation of the electrical connections and functional relationships between various components within a circuit. It primarily illustrates the path of current flow, detailing how electricity travels through different elements like resistors, capacitors, and power sources. By depicting the connections as lines and the components as standardized symbols, a circuit diagram allows engineers and technicians to understand the flow of current, troubleshoot issues, and plan modifications effectively. While the physical appearance of the circuit and the type of components are important, they don't capture the dynamic nature of how electricity flows throughout the circuit, which is the fundamental purpose of a circuit diagram. The power output of a circuit is also a critical aspect, but it is not illustrated directly through the diagram itself; rather, it is derived from understanding the components and the current path depicted in the circuit. This focus on the path of current flow helps anyone reading the diagram to understand the functionality and behavior of the circuit under various conditions.

4. What is a lever?

- A. A rigid bar that is anchored at one point**
- B. A rotating wheel that moves around an axis
- C. A flexible beam that bends under stress
- D. A device that amplifies sound waves

A lever is defined as a rigid bar that is anchored at one point, known as the fulcrum. This simple machine works on the principle of mechanical advantage, allowing a small input force applied at one end of the lever to lift a larger load on the opposite end by utilizing the distance from the fulcrum. The position of the fulcrum and the lengths of the arms of the lever influence how much the input force is magnified, which makes levers effective tools for lifting or moving heavy objects with less effort. In contrast to the other choices, a rotating wheel that moves around an axis refers to a different type of simple machine known as a wheel and axle, which operates on different mechanical principles. A flexible beam that bends under stress suggests a material response to an external force, not a mechanical advantage system like a lever. Lastly, a device that amplifies sound waves pertains to acoustics rather than the mechanical principles governing a lever. Thus, the description of a lever as a rigid bar anchored at a fulcrum accurately captures its essential function and characteristics in physics.

5. What is an oxidation number?

- A. The number of protons in an atom
- B. The charge of an element when it stands alone**
- C. The total number of electrons in an atom
- D. The atomic mass of an element

An oxidation number, also known as an oxidation state, represents the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% ionic. This concept is essential in understanding how elements interact in chemical reactions, particularly in redox reactions where electrons are transferred. In essence, the oxidation number indicates the degree of oxidation (loss of electrons) or reduction (gain of electrons) an atom undergoes in a compound, and it helps in balancing chemical equations. For example, in the compound NaCl, the oxidation number of sodium is +1 and that of chlorine is -1, reflecting their ionic charges in the context of the compound. The other options do not accurately represent what an oxidation number is. The number of protons in an atom relates to the atomic number, which determines the identity of the element but does not reflect its oxidation state. The total number of electrons is not directly linked to oxidation numbers, as some electrons can be involved in bonds and some free in atomic shells. The atomic mass is a measure of the mass of an atom, taking into account all its isotopes and does not indicate its charge state in compounds. Thus, understanding the oxidation number is crucial for analyzing chemical stability, bonding environments,

6. Which type of speed varies with time and is not constant?

- A. Constant speed
- B. Average speed
- C. Instantaneous speed**
- D. Acceleration

Instantaneous speed refers to the speed of an object at a specific moment in time. Unlike constant speed, which does not change over time, or average speed, which is calculated over a total distance and time interval, instantaneous speed varies because it can change frequently based on the object's movement. For example, when a car accelerates or decelerates, its instantaneous speed changes at each moment, reflecting the precise speed of the vehicle at any given point in its journey. This concept is key in understanding motion as it provides a more detailed view of how an object moves over time, rather than just an overall rate.

7. How does heat transfer occur?

- A. Only through conduction
- B. Via electromagnetic waves only
- C. By convection and conduction only
- D. Due to a temperature difference between objects**

Heat transfer occurs due to a temperature difference between objects. This fundamental principle underlies all modes of heat transfer—conduction, convection, and radiation. When there is a temperature difference, heat moves from the hotter object to the cooler one until thermal equilibrium is reached, meaning both objects reach the same temperature. This mechanism is the driving force behind all forms of heat transfer. For example, in conduction, heat flows through materials as faster-moving molecules collide with slower-moving ones, transferring energy. In convection, heat transfers through fluids (liquids and gases) where warmer, less dense regions rise and colder, denser regions sink, establishing a circulation pattern that facilitates energy movement. Although electromagnetic waves, such as infrared radiation, can transfer heat even through a vacuum, the essential requirement is still a temperature difference that prompts the flow of energy. This clarifies that heat transfer is intrinsically linked to differences in thermal energy, making the statement about temperature difference the correct choice.

8. What describes the amplitude of a wave?

- A. The distance between the peaks
- B. The maximum distance from the rest position to the crest or trough**
- C. The time taken for one cycle of the wave
- D. The speed at which the wave travels

The amplitude of a wave is defined as the maximum distance from the rest position to either the crest (the highest point) or the trough (the lowest point) of the wave. This characteristic describes how far the wave oscillates from its undisturbed position, which directly relates to the energy the wave carries. A greater amplitude indicates more energy, while a smaller amplitude suggests less energy. Understanding amplitude is critical in various contexts, such as sound waves, where a higher amplitude corresponds to louder sounds, or in electromagnetic waves, where it might relate to the intensity of light. The other choices describe different aspects of wave behavior: the distance between the peaks refers to wavelength, the time for one cycle describes the period, and the speed pertains to how fast the wave propagates through a medium.

9. What does luster refer to in terms of physical properties?

- A. The heaviness of a material**
- B. The shininess or reflectivity of a substance**
- C. The chemical reactivity of a substance**
- D. The ability of a material to dissolve in water**

Luster refers specifically to the shininess or reflectivity of a substance. It describes how light interacts with the surface of a material, indicating its ability to reflect light to produce a shiny appearance. This property is particularly relevant for materials such as metals and gemstones, where the quality of the surface can enhance their visual appeal. Luster is an important characteristic used in classifying minerals and assessing their aesthetic value. In the context of the other options, weight pertains to mass rather than surface quality. Chemical reactivity relates to how a substance interacts with other chemicals, not its physical appearance. Solubility in water measures how much of a substance can dissolve in water, which is also unrelated to the reflective properties of a material's surface. Thus, the definition of luster is clearly tied to the visual characteristics of a material rather than its mass, reactivity, or solubility.

10. Which of the following statements correctly identifies melting?

- A. Liquid to solid transition**
- B. Solid to liquid transition**
- C. Gas to liquid transition**
- D. Liquid to gas transition**

Melting is defined as the process in which a solid changes into a liquid. This transformation occurs as the temperature of the solid increases, allowing the particles within it to gain enough energy to overcome the forces holding them in a rigid structure, which leads to the fluid state of matter. In this phase change, the solid maintains its identity until it reaches its melting point, where it then begins to transition into the liquid phase. The process is essential in various natural and industrial contexts, such as the melting of ice to form water and the use of melting points to characterize materials. Understanding the distinction between melting and the other phase transitions is crucial. The options referring to liquid to solid, gas to liquid, and liquid to gas transitions represent freezing, condensation, and vaporization, respectively, each involving different changes in the state of matter that are not related to the definition of melting.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ncfephysicalscience.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE