

NCEES Fundamentals of Engineering (FE) Mechanical Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What kind of cycle takes place within a condenser in a refrigeration system?**
 - A. Heating cycle**
 - B. Cooling cycle**
 - C. Phase change from gas to liquid**
 - D. Pressure reduction**

- 2. What does Dalton's law of partial pressures state about gases?**
 - A. The total pressure of a gas mixture is the sum of the individual gases' partial pressures**
 - B. The total volume of a nonreactive gas mixture is the sum of the individual gases' volumes**
 - C. Each gas of a mixture has the same partial pressure as that of the mixture**
 - D. The gas pressure of a mixture is the weighted average of the individual gas pressures**

- 3. During which welding process is gas shielding primarily used to protect the weld area?**
 - A. MIG welding**
 - B. TIG welding**
 - C. SMAW**
 - D. Both A and B**

- 4. What is the significance of Poisson's ratio in materials science?**
 - A. It measures the elasticity of a material**
 - B. It describes the relationship between lateral and axial strain**
 - C. It indicates the brittleness of a material**
 - D. It determines thermal conductivity**

5. Which of the following is a proper statement of the second law of thermodynamics?

- A. It is impossible for a heat engine to produce net work in a complete cycle if it exchanges heat only with bodies at a lower temperature**
- B. It is impossible for a system working in a complete cycle to accomplish, as its sole effect, the transfer of heat from a body at a given temperature to a body at a higher temperature**
- C. It is impossible for a system working in a complete cycle to accomplish, as its sole effect, the transfer of heat from a body at a given temperature to a body at a lower temperature**
- D. It is impossible for a heat engine to produce net work in a complete cycle if it exchanges heat only with bodies exhibiting a temperature differential**

6. What does the term "fatigue" refer to in materials science?

- A. Weakening of a material due to static loads**
- B. Failure caused by heat treatment processes**
- C. Weakening due to repeatedly applied loads or stress**
- D. Permanent deformation from overloading**

7. What is the principle of conservation of energy?

- A. Energy can be created or destroyed**
- B. Energy is transformed but not conserved in an isolated system**
- C. Energy is conserved in an isolated system**
- D. Energy is independent of matter**

8. Where can a couple be moved on a rigid body to maintain its equivalent effect?

- A. Along the line of action**
- B. In a parallel plane**
- C. Along the perpendicular bisector joining the two original forces**
- D. Anywhere on the rigid body**

9. What is the role of a heat exchanger?

- A. To generate heat from combustion**
- B. To transfer heat between two or more fluids without mixing them**
- C. To cool fluids before entering a system**
- D. To measure heat loss in a system**

10. What is the purpose of a safety factor in engineering design?

- A. To minimize production costs**
- B. To ensure aesthetic design**
- C. To provide a margin of safety against failure**
- D. To balance load distribution**

SAMPLE

Answers

SAMPLE

1. C
2. A
3. D
4. B
5. B
6. C
7. C
8. D
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What kind of cycle takes place within a condenser in a refrigeration system?

- A. Heating cycle**
- B. Cooling cycle**
- C. Phase change from gas to liquid**
- D. Pressure reduction**

In a refrigeration system, the condenser plays a critical role in the thermodynamic cycle by facilitating a phase change from gas to liquid. When the refrigerant gas enters the condenser, it is at a high temperature and pressure. As it passes through the condenser coils, it releases heat to the surrounding environment, which causes the refrigerant to undergo a phase transition from a gaseous state to a liquid state. This process is essential because it prepares the refrigerant to continue its cycle by allowing it to be pumped back into the evaporator at lower pressure and temperature. The importance of this phase change cannot be overstated, as it is key to the refrigeration cycle's efficiency and effectiveness. The liquefaction of the refrigerant in the condenser is integral to absorbing heat in the evaporator, thus enabling the cooling effect desired in refrigeration applications. Therefore, the identification of the phase change from gas to liquid as occurring in the condenser is fundamentally correct in understanding the operations of a refrigeration system.

2. What does Dalton's law of partial pressures state about gases?

- A. The total pressure of a gas mixture is the sum of the individual gases' partial pressures**
- B. The total volume of a nonreactive gas mixture is the sum of the individual gases' volumes**
- C. Each gas of a mixture has the same partial pressure as that of the mixture**
- D. The gas pressure of a mixture is the weighted average of the individual gas pressures**

Dalton's law of partial pressures states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of each individual gas present in the mixture. Each gas in the mixture exerts pressure independently of the others, as if each gas occupies the entire volume. Therefore, to determine the overall pressure in a gas mixture, you simply add together the pressures that each gas would exert if it were alone in the container. This principle is fundamental in thermodynamics and is widely applicable in various fields, including engineering and chemistry. Understanding this law allows for the calculation of pressures in mixtures and plays a vital role in processes like gas analysis, reactions involving gases, and systems where gases are involved under varying conditions.

3. During which welding process is gas shielding primarily used to protect the weld area?

- A. MIG welding**
- B. TIG welding**
- C. SMAW**
- D. Both A and B**

Gas shielding is an essential aspect of certain welding processes, particularly in protecting the weld area from oxidation and contamination during the welding operation. In the case of MIG (Metal Inert Gas) welding and TIG (Tungsten Inert Gas) welding, inert gases such as argon or carbon dioxide are used to create a protective atmosphere around the molten weld area. In MIG welding, the process uses a continuous wire feed as an electrode, and the inert gas shields the molten pool from the surrounding air, preventing unwanted reactions that could weaken the weld. Similarly, in TIG welding, a non-consumable tungsten electrode is used, and the gas shielding protects not only the weld pool but also the electrode itself. Both MIG and TIG rely on gas shielding to ensure the quality and integrity of the weld. This makes the option that encompasses both processes the correct response, as gas shielding is a common and vital practice in both welding techniques. Other welding methods, such as SMAW (Shielded Metal Arc Welding), utilize a different mechanism for protection, typically through a flux covering that produces a gaseous shield but does not involve an external gas supply like the other two methods. Thus, the correct answer emphasizes the shared reliance on gas shielding in MIG and TIG welding processes

4. What is the significance of Poisson's ratio in materials science?

- A. It measures the elasticity of a material**
- B. It describes the relationship between lateral and axial strain**
- C. It indicates the brittleness of a material**
- D. It determines thermal conductivity**

Poisson's ratio is a fundamental concept in materials science that describes how materials deform under stress. Specifically, it quantifies the relationship between lateral strain (the deformation perpendicular to the applied load) and axial strain (the deformation in the direction of the applied load). When a material is stretched, it typically expands in the lateral direction as well as the axial direction. Poisson's ratio is defined as the negative ratio of these two strains, providing insight into the material's behavior under different load conditions. Understanding Poisson's ratio is crucial for predicting how materials will respond in practical applications, especially in fields such as structural engineering and mechanical design. A higher Poisson's ratio indicates that a material will experience more significant lateral deformation in response to axial stress and can help engineers select appropriate materials for specific applications. This property is vital when analyzing stress distributions and deformation characteristics in structures and components. The other options focus on different material properties that are influenced by various factors. While elasticity refers to how a material returns to its original shape after deformation, it is a different concept from Poisson's ratio. Brittleness relates to a material's ability to withstand stress before fracturing, and thermal conductivity pertains to a material's ability to conduct heat. Each of these properties offers valuable

5. Which of the following is a proper statement of the second law of thermodynamics?

- A. It is impossible for a heat engine to produce net work in a complete cycle if it exchanges heat only with bodies at a lower temperature
- B. It is impossible for a system working in a complete cycle to accomplish, as its sole effect, the transfer of heat from a body at a given temperature to a body at a higher temperature**
- C. It is impossible for a system working in a complete cycle to accomplish, as its sole effect, the transfer of heat from a body at a given temperature to a body at a lower temperature
- D. It is impossible for a heat engine to produce net work in a complete cycle if it exchanges heat only with bodies exhibiting a temperature differential

The second law of thermodynamics can be succinctly summarized through several useful concepts and equivalent statements, one of which is that it is impossible for a system operating in a complete cycle to transfer heat from a cooler body to a hotter body without additional work being done on the system. This principle is encapsulated in the correct choice, which stresses that the only effect of such a cycle would be the heat transfer from a given temperature to a higher temperature, without any work interaction. The essence of this statement highlights the directionality of natural processes—heat naturally flows from hot to cold, and to induce a reversal of this process, some form of energy input is necessary. This is a foundational concept in thermodynamics and is crucial for understanding processes like refrigeration, where work must be performed to move heat against its natural gradient. The other statements touch upon elements of the second law but don't capture the importance of performing work to achieve specific heat transfer outcomes clearly as the correct choice does. For example, one of the options incorrectly implies that heat can only be exchanged with bodies at lower temperatures for work, which contradicts the established principles of heat engines and thermodynamic cycles. Each of these nuances contributes to a comprehensive understanding of how energy transfer and transformations are governed by the laws

6. What does the term "fatigue" refer to in materials science?

- A. Weakening of a material due to static loads
- B. Failure caused by heat treatment processes
- C. Weakening due to repeatedly applied loads or stress**
- D. Permanent deformation from overloading

In materials science, "fatigue" specifically refers to the process of weakening that occurs in a material due to the application of cyclic or repetitive loads over time. This can lead to the development of microscopic cracks in the material, which may eventually grow and cause failure even if the applied stress is less than the material's ultimate tensile strength. Fatigue can be influenced by various factors including the magnitude of the load, the number of cycles, the material properties, and the environment in which the material is operating. Understanding fatigue is crucial for engineers when designing components that will encounter fluctuating loads, such as in automotive, aerospace, and structural applications, where safety and reliability are paramount. This concept highlights the importance of not only the maximum stress that a material can withstand, but also how that material behaves under conditions that involve repeated loading over time.

7. What is the principle of conservation of energy?

- A. Energy can be created or destroyed
- B. Energy is transformed but not conserved in an isolated system
- C. Energy is conserved in an isolated system**
- D. Energy is independent of matter

The principle of conservation of energy states that the total energy in an isolated system remains constant over time. This means that energy cannot be created or destroyed; it can only change forms within that system. In other words, the energy before any transformation or process will be equal to the energy after. For example, if energy is converted from kinetic to potential energy, the total energy remains unchanged, demonstrating the concept that energy is conserved in an isolated system. This principle is foundational in various branches of physics and engineering, emphasizing that the energy you start with in a closed system will always equal the energy you end up with after all processes are considered, regardless of the transformations that may occur. Understanding this principle is crucial for analyzing systems in mechanics, thermodynamics, and other engineering disciplines.

8. Where can a couple be moved on a rigid body to maintain its equivalent effect?

- A. Along the line of action
- B. In a parallel plane
- C. Along the perpendicular bisector joining the two original forces
- D. Anywhere on the rigid body**

The key principle to understand here is that a couple consists of two equal and opposite forces whose lines of action do not coincide, resulting in a rotation about a specific point. One of the defining characteristics of a couple is that it creates a moment (torque) without translating the center of mass of the rigid body. When considering where a couple can be moved to maintain its equivalent effect, it is important to recognize that as long as the position of the forces that make up the couple is changed in such a way that their effect on the rigid body remains unchanged, it can be moved anywhere. This is because the moment generated by the couple remains the same irrespective of the position of the forces, as long as they remain in a parallel line and their magnitude does not change. Thus, the couple can be shifted to any point in the rigid body, maintaining the previous rotational effect. This rule applies to any couple configuration, allowing the forces to be relocated without altering the resultant moment acting on the object. This fundamental property is what makes the answer correct. In terms of the other choices, moving the couple along the line of action or in a parallel plane wouldn't necessarily retain its impact away from the original forces, and moving it along the perpendicular bisector would

9. What is the role of a heat exchanger?

- A. To generate heat from combustion
- B. To transfer heat between two or more fluids without mixing them**
- C. To cool fluids before entering a system
- D. To measure heat loss in a system

The role of a heat exchanger is to transfer heat between two or more fluids without allowing them to mix. This is a critical function in various mechanical systems, as it allows for efficient energy transfer while maintaining the integrity of the separate fluid streams. Heat exchangers are widely used in applications like heating, ventilation, and air conditioning (HVAC), power generation, and chemical processing, among others. By transferring heat, these devices can either cool or heat a fluid depending on the needs of the system. The effectiveness of a heat exchanger is typically measured by its heat transfer rate, which depends on the surface area, temperature difference between the fluids, and the flow arrangement (counterflow, parallel flow, etc.). The other options focus on functions that are not the primary purpose of a heat exchanger: generating heat from combustion is related to combustion systems, cooling fluids is a function performed by cooling systems, and measuring heat loss pertains more to thermal management and insulation assessments rather than heat exchange. The unique aspect of heat exchangers is their ability to efficiently move thermal energy without mixing the fluids involved.

10. What is the purpose of a safety factor in engineering design?

- A. To minimize production costs
- B. To ensure aesthetic design
- C. To provide a margin of safety against failure**
- D. To balance load distribution

The purpose of a safety factor in engineering design is primarily to provide a margin of safety against potential failures in a structure or component. The safety factor is a critical element in engineering practices that accounts for uncertainties in design, material properties, loading conditions, and potential misuse. By incorporating a safety factor, engineers can ensure that the design can withstand unforeseen events or greater than expected loads without failing. For instance, if a component is designed to handle a maximum expected load of 1000 pounds, a safety factor might bring the design limit to 1500 pounds. This additional capacity helps safeguard against inaccuracies in load estimations, material defects, or unexpected conditions. In essence, the safety factor is a proactive measure to enhance reliability and ensure the safety of users over time. While considerations like minimizing production costs and aesthetic design are significant in the overall design process, they do not directly relate to the safety and reliability that the safety factor aims to protect. Balancing load distribution is important for the performance of the structure but does not specifically address the safety margins that a safety factor provides. Therefore, option C best captures the fundamental objective of incorporating a safety margin in engineering design.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ncees-fundamentalsofengineeringmechanical.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE