

NCEA Level 3 Waves Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which term refers to the maximum height of a wave from its rest position?**
 - A. Wavelength**
 - B. Frequency**
 - C. Amplitude**
 - D. Speed**

- 2. What is the impact of temperature on the speed of sound in air?**
 - A. Higher temperatures decrease the speed of sound.**
 - B. Temperature does not affect the speed of sound.**
 - C. Higher temperatures increase the speed of sound.**
 - D. Sound travels faster in colder air.**

- 3. What type of light spectra can be produced by gases in low pressure conditions?**
 - A. Emission spectra**
 - B. Continuous spectra**
 - C. Emission lines**
 - D. Infrared spectra**

- 4. What kind of spectra is produced by low pressure gas that is excited by heat or electricity?**
 - A. Absorption spectra**
 - B. Continuous spectra**
 - C. Emission spectra**
 - D. Reflection spectra**

- 5. When two or more waves overlap, what phenomenon is observed?**
 - A. Destructive interference**
 - B. Constructive interference**
 - C. Superimposed waves**
 - D. Stationary waves**

- 6. What type of pipe allows both ends to be open for sound waves to propagate?**
- A. Closed pipe**
 - B. Open pipe**
 - C. Half-open pipe**
 - D. Echo pipe**
- 7. What occurs when two waves arriving at the same time and place in-phase result in a new wave with a larger amplitude?**
- A. Destructive interference**
 - B. Constructive interference**
 - C. Phase shift**
 - D. Wave superposition**
- 8. What do we call the point of maximum negative displacement in a transverse wave?**
- A. Crest**
 - B. Trough**
 - C. Amplitude**
 - D. Node**
- 9. What does amplitude represent in wave terminology?**
- A. The distance between two crest points**
 - B. The total energy carried by the wave**
 - C. The maximum displacement from equilibrium**
 - D. The speed at which the wave travels**
- 10. How does temperature influence sound transmission?**
- A. Warmer temperatures slow down sound**
 - B. Colder temperatures speed up sound**
 - C. Higher temperatures increase wave speed in sound**
 - D. Temperature has no effect on sound transmission**

Answers

SAMPLE

1. C
2. C
3. A
4. C
5. C
6. B
7. B
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. Which term refers to the maximum height of a wave from its rest position?

- A. Wavelength**
- B. Frequency**
- C. Amplitude**
- D. Speed**

The maximum height of a wave from its rest position is referred to as amplitude. This term is crucial in wave physics as it quantifies the extent of displacement of points from their normal rest positions in oscillating systems, such as waves. When you visualize a wave, the amplitude represents how high the peaks (or how low the troughs) rise or fall from the center line of the wave. Understanding amplitude is essential as it also relates to the energy carried by the wave - greater amplitude generally means more energy. For instance, in sound waves, a higher amplitude corresponds to louder sounds, while in water waves, it correlates with larger waves. Other terms such as wavelength refer to the distance between successive crests (or troughs) of a wave, frequency relates to the number of cycles that occur in a unit of time, and speed describes how fast the wave propagates through a medium. Each of these properties contributes to the overall behavior and characteristics of waves but do not define the maximum height from the rest position, which is specifically characterized by amplitude.

2. What is the impact of temperature on the speed of sound in air?

- A. Higher temperatures decrease the speed of sound.**
- B. Temperature does not affect the speed of sound.**
- C. Higher temperatures increase the speed of sound.**
- D. Sound travels faster in colder air.**

The interaction between temperature and the speed of sound in air is rooted in the kinetic theory of gases. As temperature rises, the average kinetic energy of the air molecules also increases. This leads to molecules moving more rapidly. In practical terms, this means that sound waves, which propagate through the air as oscillations of these molecules, can travel more efficiently when the molecules are moving fast. Consequently, higher temperatures facilitate a quicker transmission of sound waves, resulting in an increase in the speed of sound. This phenomenon is evidenced by the fact that the speed of sound in air is approximately 0.6 meters per second faster for every 1°C increase in temperature. Therefore, the idea that higher temperatures increase the speed of sound is grounded in the fundamental behavior of gas molecules under varying thermal conditions.

3. What type of light spectra can be produced by gases in low pressure conditions?

- A. Emission spectra**
- B. Continuous spectra**
- C. Emission lines**
- D. Infrared spectra**

Gases at low pressure emit light when their atoms or molecules become excited and then return to lower energy states. This process results in the emission of photons at specific wavelengths that correspond to the differences in energy levels of the electrons within the atoms. The light emitted creates what is known as an emission spectrum, which consists of distinct lines of color, or "emission lines," corresponding to those specific wavelengths. In the case of low pressure gases, as individual atoms or molecules emit light, the resulting emission spectrum shows these unique wavelengths, rather than a continuous range of colors found in other types of spectra. This characteristic makes emission spectra best suited to identify the presence of specific elements within the gas. Therefore, emission spectra produced by gases in low pressure conditions are crucial for applications such as spectroscopy, where scientists analyze light from distant stars or elements in laboratory experiments to gather information about their composition and behavior.

4. What kind of spectra is produced by low pressure gas that is excited by heat or electricity?

- A. Absorption spectra**
- B. Continuous spectra**
- C. Emission spectra**
- D. Reflection spectra**

The type of spectrum produced by low pressure gas that is excited by heat or electricity is known as emission spectra. When a gas is heated or subjected to an electric field, its atoms or molecules gain energy. This energy is transferred to the electrons, which then occupy higher energy levels. When the electrons return to their original (lower) energy levels, they release this energy in the form of light. This emitted light is specific to the particular elements present in the gas, resulting in a series of distinct wavelengths of light rather than a continuous range. Each element emits light at characteristic wavelengths, which are observed as bright lines on a dark background when analyzed through a spectroscope. This phenomenon forms what is known as an emission spectrum. In contrast, absorption spectra occur when light passes through a cooler gas; certain wavelengths are absorbed, leading to dark lines on a continuous spectrum background. Continuous spectra are produced by solid, liquid, or densely packed gases, where light is emitted uniformly across a range of wavelengths without specific lines. Reflection spectra relate to the light reflected off surfaces and are not applicable in this context of excited gases.

5. When two or more waves overlap, what phenomenon is observed?

- A. Destructive interference**
- B. Constructive interference**
- C. Superimposed waves**
- D. Stationary waves**

When two or more waves overlap, the phenomenon that is observed is indeed the superposition of waves. This principle states that when waves meet, they combine to form a new wave which is the result of the individual waves' amplitudes. The resulting wave can have varying characteristics depending on the phase relationship between the overlapping waves. Superimposed waves can exhibit different behaviors, such as constructive interference, where the waves add together to create a wave of greater amplitude, or destructive interference, where they combine to produce a wave of reduced amplitude. Thus, the concept of superposition encompasses both constructive and destructive interference. It highlights the fundamental nature of waves, where they can combine and influence each other while traveling through the same medium. In contrast, stationary waves refer to a specific condition that arises from the interference of two waves traveling in opposite directions, resulting in points of no movement (nodes) and points of maximum movement (antinodes), but this is a more specific situation within the broader concept of wave superposition.

6. What type of pipe allows both ends to be open for sound waves to propagate?

- A. Closed pipe**
- B. Open pipe**
- C. Half-open pipe**
- D. Echo pipe**

An open pipe is characterized by having both ends open, which allows sound waves to propagate freely in and out of the pipe. This condition permits the formation of standing waves that have anti-nodes (points of maximum displacement) at both ends. This standing wave pattern supports a fundamental frequency and its harmonics that are integral multiples of the fundamental frequency, allowing for greater sound propagation and resonance. In contrast, a closed pipe has one end closed and restricts the movement of air at that end, creating a different wave pattern with a node at the closed end and an anti-node at the open end. A half-open pipe has one end closed and one end open, leading to a distinct standing wave pattern that only supports certain frequencies. The term "echo pipe" is not a standard term in wave physics and does not accurately describe a specific type of pipe related to sound wave propagation. Thus, the correct answer is the open pipe, as it facilitates the optimal conditions for sound waves to travel through both ends, allowing for a fuller resonance and sound quality.

7. What occurs when two waves arriving at the same time and place in-phase result in a new wave with a larger amplitude?

- A. Destructive interference**
- B. Constructive interference**
- C. Phase shift**
- D. Wave superposition**

When two waves arrive simultaneously and in-phase, they combine to form a new wave with a greater amplitude. This phenomenon is known as constructive interference. In constructive interference, the crests of the waves align with each other, while the troughs also align, effectively adding the amplitudes of the individual waves together. As a result, the resultant wave has an amplitude that is the sum of the amplitudes of the two incoming waves, which can lead to a significantly larger wave. This is a fundamental property of waves, demonstrating how they can interact and reinforce one another when their peaks and valleys align. This interaction is critical in various applications, including sound waves, light waves, and other types of waves observed in physical systems.

8. What do we call the point of maximum negative displacement in a transverse wave?

- A. Crest**
- B. Trough**
- C. Amplitude**
- D. Node**

In a transverse wave, the point of maximum negative displacement is referred to as a trough. This terminology arises from the way waves are visualized: the crest represents the highest point of the wave, while the trough is the lowest point. Displacement in this context measures how far a point on the wave is from its equilibrium position; negative displacement indicates a position below this equilibrium, which is exactly where the trough is found. Understanding this concept is essential, particularly in recognizing the characteristics of wave behavior, including wave amplitude and frequency. Amplitude describes the maximum displacement from the equilibrium position, encompassing both crests and troughs, but it does not specifically define the maximum negative displacement. Nodes are points where there is no displacement at all in standing waves and are unrelated to the concepts of crests and troughs in this context. Hence, identifying the trough as the point of maximum negative displacement is key in analyzing wave patterns effectively.

9. What does amplitude represent in wave terminology?

- A. The distance between two crest points
- B. The total energy carried by the wave
- C. The maximum displacement from equilibrium**
- D. The speed at which the wave travels

Amplitude in wave terminology is defined as the maximum displacement of a point on the wave from its equilibrium position. It indicates how far the wave moves away from its rest position, which directly affects the energy carried by the wave. A larger amplitude means that the wave can carry more energy, leading to a more intense wave. While other concepts are important in wave mechanics, such as the wavelength (the distance between two crest points), total energy, and wave speed, they do not describe amplitude specifically. Wavelength relates to the physical distance between successive crests or troughs. Total energy can be influenced by amplitude, but it is not defined as amplitude itself. Wave speed is concerned with how fast a wave travels through a medium and is separate from the concept of amplitude. Thus, the definition of amplitude being the maximum displacement from the equilibrium position is the key factor in understanding this concept in wave terminology.

10. How does temperature influence sound transmission?

- A. Warmer temperatures slow down sound
- B. Colder temperatures speed up sound
- C. Higher temperatures increase wave speed in sound**
- D. Temperature has no effect on sound transmission

Temperature significantly affects the speed at which sound travels through a medium such as air. As the temperature increases, the molecules of the medium move faster and collide with one another more frequently. This increased molecular motion facilitates quicker energy transfer, which in turn increases the speed of the sound waves propagating through the medium. When temperatures are higher, the speed of sound can increase, allowing sound waves to travel faster. In practical terms, this means that on a warm day, sounds can be heard further away and travel more quickly than on a colder day. This relationship between temperature and sound speed is a fundamental aspect of wave behavior and plays a crucial role in various applications like acoustics and meteorology. Understanding this principle is essential, especially in fields that rely on sound and wave behavior, as it directly impacts how sound is perceived and the effectiveness of communication in different environmental conditions.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ncealvl3waves.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE