

NCEA Level 3 Chemistry - Aqueous Chemistry (AS91393) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Which of the following is an example of a weak acid and its conjugate base?**
 - A. Hydrochloric acid and chloride ions**
 - B. Acetic acid and acetate**
 - C. Sulfuric acid and sulfate ions**
 - D. Nitric acid and nitrate ions**

- 2. What is the role of electrolytes in aqueous solutions?**
 - A. They increase the viscosity of the solution**
 - B. They dissociate to produce ions that conduct electricity**
 - C. They act as catalysts in chemical reactions**
 - D. They absorb heat from the solution**

- 3. What is the primary function of a buffer solution?**
 - A. To increase the solubility of acids**
 - B. To maintain a constant pH when acids or bases are added**
 - C. To completely neutralize acids and bases**
 - D. To alter the concentration of ions in solution**

- 4. Which properties depend on the number of solute particles rather than their identity?**
 - A. Thermodynamic properties**
 - B. Colligative properties**
 - C. Kinetic properties**
 - D. Concentration properties**

- 5. What is the equation for calculating the pH in terms of hydronium ion concentration?**
 - A. $\text{pH} = -\log[\text{OH}^-]$**
 - B. $\text{pH} = -\log[\text{H}_3\text{O}^+]$**
 - C. $\text{pH} = \log[\text{H}_3\text{O}^+]$**
 - D. $\text{pH} = [\text{H}_3\text{O}^+] + 14$**

6. What happens when the temperature is decreased in an exothermic reaction?

- A. The reaction will proceed to remove heat**
- B. No change occurs in the equilibrium**
- C. Reactants are favored**
- D. The reaction immediately ceases**

7. In a solution, what primarily dictates surface properties?

- A. The amount of solvent present**
- B. The molecular interactions at the interface**
- C. The volume of the solution**
- D. The temperature of the solution**

8. What does dilution do to the concentration of a solute?

- A. It increases the concentration of the solute**
- B. It decreases the concentration of the solute**
- C. It has no effect on the concentration of the solute**
- D. It makes the solution non-homogeneous**

9. What effect does the common ion effect have on the solubility of salts?

- A. It increases the solubility of salts.**
- B. It has no effect on solubility.**
- C. It reduces the solubility of a salt when a compound with a common ion is added.**
- D. It enhances the solubility of a salt in acidic solutions.**

10. What is a suspending agent?

- A. A substance that accelerates chemical reactions**
- B. A substance that enhances solvation**
- C. A substance that keeps particles evenly dispersed in a liquid**
- D. A substance that increases the temperature of a reaction**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. B
6. A
7. B
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. Which of the following is an example of a weak acid and its conjugate base?

- A. Hydrochloric acid and chloride ions**
- B. Acetic acid and acetate**
- C. Sulfuric acid and sulfate ions**
- D. Nitric acid and nitrate ions**

The choice of acetic acid and acetate as an example of a weak acid and its conjugate base is appropriate because acetic acid (CH_3COOH) only partially dissociates in aqueous solution to produce hydrogen ions (H^+) and acetate ions (CH_3COO^-). This means that at any given moment, a significant concentration of undissociated acetic acid remains in the solution, characterizing it as a weak acid. When acetic acid donates a proton, the resulting acetate ion is its conjugate base. This relationship is essential in understanding acid-base chemistry, as the strength of the acid is related to the extent of its dissociation in water: weak acids only partially dissociate, resulting in equilibrium between the undissociated acid and the ions produced. In contrast, the other options provided involve strong acids, which fully dissociate in aqueous solutions. Hydrochloric acid, sulfuric acid, and nitric acid are all strong acids, meaning they complete the dissociation process, leading to a negligible concentration of the undissociated acid and, as a result, do not exemplify the weak acid/conjugate base dynamic represented by acetic acid and acetate.

2. What is the role of electrolytes in aqueous solutions?

- A. They increase the viscosity of the solution**
- B. They dissociate to produce ions that conduct electricity**
- C. They act as catalysts in chemical reactions**
- D. They absorb heat from the solution**

In aqueous solutions, electrolytes are substances that dissociate into ions when dissolved in water. This dissociation is crucial because it produces charged particles, which are essential for conducting electricity. An electrolyte can be a salt, acid, or base that, when added to water, separates into cations and anions. The movement of these ions allows the solution to conduct electric current, a property that is fundamental in various chemical and physical processes. For instance, when table salt (sodium chloride) is dissolved in water, it separates into sodium ions (Na^+) and chloride ions (Cl^-). This ionic dissociation enables the solution to conduct electricity, which is why electrodes placed in the solution will register a current flow when connected to an external power source. This property of electrolytes is critically utilized in various applications, including electrolysis, electrochemical cells, and biological systems where ion balance is vital for function.

3. What is the primary function of a buffer solution?

- A. To increase the solubility of acids
- B. To maintain a constant pH when acids or bases are added**
- C. To completely neutralize acids and bases
- D. To alter the concentration of ions in solution

The primary function of a buffer solution is to maintain a constant pH when acids or bases are added. Buffers are typically composed of a weak acid and its conjugate base or a weak base and its conjugate acid. This composition allows them to react with added H^+ or OH^- ions, minimizing changes in pH. When an acid is introduced to the solution, the weak base component of the buffer can absorb the excess H^+ ions, thereby preventing a significant decrease in pH. Conversely, if a base is added, the weak acid component can donate H^+ ions to counteract the increase in pH. This stabilizing effect is crucial in many biological and chemical processes where a specific pH range is needed for optimal function, making buffers essential in various applications, including biological systems, industrial processes, and laboratory experiments.

4. Which properties depend on the number of solute particles rather than their identity?

- A. Thermodynamic properties
- B. Colligative properties**
- C. Kinetic properties
- D. Concentration properties

The correct answer highlights colligative properties, which are unique because they depend solely on the number of solute particles present in a solution, not on the type of particles. This means that whether the solute is salt, sugar, or another substance, as long as the same number of solute particles is present, the effects on the solution's properties will be similar. Colligative properties include boiling point elevation, freezing point depression, vapor pressure lowering, and osmotic pressure. For example, adding more solute particles to a solvent results in a higher boiling point and a lower freezing point, regardless of the specific identity of the solute. This characteristic makes colligative properties particularly important in various chemical applications where the concentration of solute affects the behavior of solutions. In contrast, thermodynamic properties relate to the energy changes and state functions in a system, kinetic properties deal with the speed and mechanism of reactions, and concentration properties generally describe the amount of solute in a given volume of solution, which can be influenced by solute identity. Thus, colligative properties stand out as those that are strictly a function of particle number, aligning perfectly with the question's criteria.

5. What is the equation for calculating the pH in terms of hydronium ion concentration?

- A. $\text{pH} = -\log[\text{OH}^-]$**
- B. $\text{pH} = -\log[\text{H}_3\text{O}^+]$**
- C. $\text{pH} = \log[\text{H}_3\text{O}^+]$**
- D. $\text{pH} = [\text{H}_3\text{O}^+] + 14$**

The equation for calculating pH in terms of hydronium ion concentration (which is represented as $[\text{H}_3\text{O}^+]$) is given by the formula $\text{pH} = -\log[\text{H}_3\text{O}^+]$. This relationship arises from the definition of pH as a measure of the acidity of a solution, where lower pH values indicate higher acidity corresponding to higher concentrations of hydronium ions. When we take the negative logarithm of the concentration of hydronium ions, we are effectively transforming a measure of concentration (which can vary widely) into a more manageable scale (pH) that typically ranges from 0 to 14 in aqueous solutions. This logarithmic transformation allows for a more intuitive understanding of acidity, where each whole number change in pH represents a tenfold change in hydronium ion concentration. The presence of the negative sign in the equation indicates that as the concentration of hydronium ions increases, the pH decreases, which is consistent with the behavior of acidic solutions. This relationship is foundational in acid-base chemistry and helps in quantifying the acidity of various aqueous solutions. Other options do not reflect the correct mathematical relationship for determining pH based on hydronium ion concentration. For instance, one

6. What happens when the temperature is decreased in an exothermic reaction?

- A. The reaction will proceed to remove heat**
- B. No change occurs in the equilibrium**
- C. Reactants are favored**
- D. The reaction immediately ceases**

In an exothermic reaction, heat is released as a product. According to Le Chatelier's principle, if a change is applied to a system at equilibrium, the system will respond by shifting the equilibrium position to counteract that change. When the temperature is decreased, the system will attempt to restore balance by producing more heat. Thus, the reaction shifts to the right, favoring the direction that produces more heat. This means that the exothermic reaction can proceed further to the right, resulting in further formation of products and the release of heat. This is why the correct response indicates that the reaction will proceed to remove heat by shifting the equilibrium towards the products. The other responses do not accurately reflect the behavior of an exothermic reaction under decreased temperature conditions. For example, if no change occurs, the equilibrium remains static, which conflicts with the principle that a system will adjust to any perturbation. Additionally, favoring reactants or ceasing the reaction does not align with the fundamental response of exothermic reactions to a decrease in temperature.

7. In a solution, what primarily dictates surface properties?

- A. The amount of solvent present**
- B. The molecular interactions at the interface**
- C. The volume of the solution**
- D. The temperature of the solution**

The surface properties of a solution are primarily dictated by the molecular interactions at the interface between the liquid and its surroundings. At this interface, the behavior of molecules can differ significantly from that in the bulk of the liquid due to the different environmental conditions, such as the presence of air or another phase. These interactions involve various forces, including hydrogen bonding, van der Waals forces, and dipole-dipole interactions, which are crucial in determining characteristics such as surface tension and the ability of a liquid to wet other surfaces. For example, stronger interactions at the interface will result in higher surface tension, affecting how substances spread across or penetrate the surface. The other factors mentioned, such as the amount of solvent present, the volume of the solution, and the temperature of the solution, can influence the overall behavior of the solution but do not directly dictate the surface properties to the same extent as molecular interactions do. These factors may alter concentration or kinetic energy but do not fundamentally change the nature of the interface itself.

8. What does dilution do to the concentration of a solute?

- A. It increases the concentration of the solute**
- B. It decreases the concentration of the solute**
- C. It has no effect on the concentration of the solute**
- D. It makes the solution non-homogeneous**

Dilution refers to the process of reducing the concentration of a solute in a solution, typically by adding more solvent. When more solvent is added to a solution containing a solute, the total volume of the solution increases, while the amount of solute remains the same. As a result, the concentration of the solute, which is defined as the amount of solute per unit volume of solution, decreases. This is often expressed mathematically by the dilution equation:
$$\frac{C_1 V_1}{C_2 V_2} = 1$$
 where C_1 and V_1 are the initial concentration and volume of the solution, and C_2 and V_2 are the final concentration and volume after dilution. Since V_2 becomes larger with the addition of solvent, C_2 (the final concentration) must be lower than C_1 (the initial concentration). In practical terms, this means that dilution effectively spreads out the solute particles throughout a greater volume of solvent, leading to a lower concentration.

9. What effect does the common ion effect have on the solubility of salts?

- A. It increases the solubility of salts.
- B. It has no effect on solubility.
- C. It reduces the solubility of a salt when a compound with a common ion is added.**
- D. It enhances the solubility of a salt in acidic solutions.

The common ion effect refers to the phenomenon in which the solubility of a salt is decreased when a compound containing a common ion is added to the solution. This effect is rooted in Le Chatelier's principle, which states that if a system at equilibrium is subjected to a change in conditions, the equilibrium will shift to counteract that change. For example, consider a salt like silver bromide (AgBr). When AgBr dissolves in water, it dissociates into silver ions (Ag^+) and bromide ions (Br^-). Now, if you add sodium bromide (NaBr), which also provides Br^- ions to the solution, the increased concentration of Br^- will shift the equilibrium of the AgBr dissociation towards the solid state to reduce the concentration of Br^- , thereby reducing the solubility of AgBr. Thus, the presence of a common ion effectively suppresses the dissolution of the salt, leading to a reduced solubility. This principle is essential in various applications including qualitative analysis and understanding the behavior of electrolytes in different conditions.

10. What is a suspending agent?

- A. A substance that accelerates chemical reactions
- B. A substance that enhances solvation
- C. A substance that keeps particles evenly dispersed in a liquid**
- D. A substance that increases the temperature of a reaction

A suspending agent is characterized as a substance that keeps particles evenly dispersed in a liquid. This is essential in many applications, particularly in pharmaceuticals and food products, where maintaining a uniform distribution of solid particles in a liquid is crucial for stability and effectiveness. The role of a suspending agent is to prevent the settling of these particles, allowing for a consistent mixture that can be easily administered or consumed. While other options describe different chemical functions, they do not accurately represent the function of a suspending agent. For instance, some substances may enhance solvation or increase reaction rates, but these roles do not involve dispersion of particles. The distinction lies in the specific action of a suspending agent, which focuses solely on maintaining the stability of particle distribution in a liquid medium. This ensures that the mixture remains homogenous for practical use.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ncealvl3schemas91393.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE