

NAUI Nitrox Diver Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Does a diver suffering from nitrogen narcosis always realize their impairment?**
 - A. Yes, they are always aware**
 - B. No, they may not be aware**
 - C. Only if they are trained**
 - D. Only at deeper depths**
- 2. Why is it important to avoid breathing pure oxygen at depths greater than 10 meters?**
 - A. It can lead to increased buoyancy**
 - B. It poses a severe risk of oxygen toxicity**
 - C. It is an inefficient use of gas**
 - D. It can cause hypercapnia**
- 3. Which physiological effects can nitrogen narcosis have?**
 - A. Reduced cognitive abilities and impaired motor skills**
 - B. Increased energy levels and awareness**
 - C. Improved coordination and reflexes**
 - D. Greater focus on diving tasks**
- 4. What is an essential component of pre-dive planning when using Nitrox?**
 - A. Understanding your dive profile and calculating the equivalent air depth (EAD)**
 - B. Conducting a visual inspection of the equipment**
 - C. Choosing the dive location and time**
 - D. Confirming the weather conditions**
- 5. What acronym is used to remember signs and symptoms of oxygen toxicity?**
 - A. OXYGEN**
 - B. CONCAVE**
 - C. ConVENTID**
 - D. CO2TOXIC**

6. Who developed a quantitative model for nitrogen loading and dive tables in the early twentieth century?

- A. Albert Einstein**
- B. Jacques Cousteau**
- C. John Scott Haldane**
- D. William Beebe**

7. What maximum depth can a diver use EAN32 with the adjusted maximum dive time provided?

- A. 23 msw**
- B. 36 msw**
- C. 30 msw**
- D. 35 msw**

8. To what altitude can standard NAUI dive tables be used?

- A. 500 meters (1640 feet)**
- B. 300 meters (1000 feet)**
- C. 200 meters (656 feet)**
- D. 100 meters (328 feet)**

9. How can you ensure that your dive gear is compatible with Nitrox?

- A. Consult the manufacturer for compatibility**
- B. Ensure all gear is specifically marked as Nitrox compatible**
- C. Use any gear as long as it is in good condition**
- D. Update gear only once every five years**

10. What effect does altitude have on Nitrox diving?

- A. It has no effect on Nitrox diving**
- B. It increases dive duration**
- C. It alters nitrogen off-gassing rates**
- D. It lowers oxygen exposure**

Answers

SAMPLE

1. B
2. B
3. A
4. A
5. C
6. C
7. A
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. Does a diver suffering from nitrogen narcosis always realize their impairment?

- A. Yes, they are always aware**
- B. No, they may not be aware**
- C. Only if they are trained**
- D. Only at deeper depths**

Diving under certain conditions can lead to nitrogen narcosis, which is a condition caused by the increased partial pressure of nitrogen in the body at depth. One of the key characteristics of nitrogen narcosis is that it can impair cognitive functions and judgment. A diver may experience confusion, euphoria, or a sense of disorientation without being fully aware of these changes in their mental state. This lack of self-awareness means that a diver could be under the influence of nitrogen narcosis and not recognize their impairment, potentially leading to poor decision-making and increased risk while diving. This phenomenon highlights a significant safety concern in diving, emphasizing the importance of adhering to safe diving practices, monitoring depth, and managing exposure to nitrogen at various depths. Understanding that not all divers will realize their impaired state is essential for risk management in diving activities.

2. Why is it important to avoid breathing pure oxygen at depths greater than 10 meters?

- A. It can lead to increased buoyancy**
- B. It poses a severe risk of oxygen toxicity**
- C. It is an inefficient use of gas**
- D. It can cause hypercapnia**

Breathing pure oxygen at depths greater than 10 meters is associated with the risk of oxygen toxicity, which is a significant concern for divers. At increased pressures found at greater depths, the partial pressure of oxygen in a diver's lungs rises, leading to a greater concentration of oxygen delivered to the body's tissues. This heightened exposure can result in oxygen toxicity, manifesting as symptoms that might include visual disturbances, seizures, and other neurological effects. Oxygen toxicity occurs when the toxic effects of oxygen overwhelm the body's ability to manage it safely, especially in the central nervous system and lungs. This risk escalates significantly below 10 meters, making the practice of breathing pure oxygen at such depths highly dangerous and generally inadvisable in recreational diving. Understanding this phenomenon is crucial for divers, as they must manage their gas mixtures appropriately to ensure safety during their dives. Using Enriched Air Nitrox (EANx) effectively reduces the partial pressure of oxygen, allowing divers to extend their bottom time safely without encountering the severe risks associated with pure oxygen.

3. Which physiological effects can nitrogen narcosis have?

- A. Reduced cognitive abilities and impaired motor skills**
- B. Increased energy levels and awareness**
- C. Improved coordination and reflexes**
- D. Greater focus on diving tasks**

Nitrogen narcosis is a condition that can occur during deep diving, primarily due to the increased partial pressure of nitrogen as a diver descends. The correct answer highlights that nitrogen narcosis can lead to reduced cognitive abilities and impaired motor skills. This effect is akin to that of alcohol intoxication, where the diver may experience diminished mental clarity, slowed reaction times, and an overall decrease in the ability to perform tasks effectively. As divers go deeper, the symptoms can increase in severity, potentially causing confusion, euphoria, and altered judgment, all of which can significantly impair decision-making and coordination. This impairment poses serious safety risks, as it can lead divers to make poor choices or miscalculate their actions while underwater. The other choices describe effects that are not consistent with nitrogen narcosis. Increased energy levels and awareness would contradict the expected cognitive and motor decline, while improved coordination and reflexes, as well as greater focus on diving tasks, suggest enhancements in performance rather than the detrimental effects associated with nitrogen narcosis. Understanding these physiological impacts is essential for safe diving practices, especially at greater depths.

4. What is an essential component of pre-dive planning when using Nitrox?

- A. Understanding your dive profile and calculating the equivalent air depth (EAD)**
- B. Conducting a visual inspection of the equipment**
- C. Choosing the dive location and time**
- D. Confirming the weather conditions**

An essential component of pre-dive planning when using Nitrox is understanding your dive profile and calculating the equivalent air depth (EAD). This is crucial because Nitrox, which is enriched air containing a higher percentage of oxygen and a lower percentage of nitrogen compared to regular air, has unique considerations for absorption rates and decompression limits. When divers use Nitrox, it's imperative to analyze their dive plan based on the specific mix of oxygen in the gas. The EAD calculation helps determine how deep the dive effectively feels and assesses the risk of nitrogen narcosis and decompression sickness. Properly assessing and planning your dive profile allows divers to maximize the safety and benefits associated with using Nitrox, such as extended bottom times in certain depth ranges and reduced nitrogen loading during dives. While conducting a visual inspection of the equipment, choosing the dive location and time, and confirming weather conditions are all important pre-dive activities, they do not directly relate to the specific considerations for dive breathing gases that Nitrox entails. Understanding your dive profile and calculating EAD is directly linked to managing oxygen exposure and ensuring safe dive practices with Nitrox.

5. What acronym is used to remember signs and symptoms of oxygen toxicity?

- A. OXYGEN**
- B. CONCAVE**
- C. ConVENTID**
- D. CO2TOXIC**

The acronym "ConVENTID" is specifically designed to help divers recall the signs and symptoms of oxygen toxicity, particularly in the context of diving with enriched air nitrox. Each letter in the acronym represents different symptoms that divers need to be aware of, such as visual changes, convulsions, and other neurological effects that can occur due to elevated partial pressures of oxygen. Understanding and recognizing these symptoms is crucial for diver safety; it enables divers to act appropriately if they begin to experience oxygen toxicity. The use of a memorable acronym aids in retention and recall during stressful or high-stakes situations underwater, where immediate recognition of symptoms can be life-saving. The other options, while they might evoke different associations, do not specifically correspond to the recognized symptoms of oxygen toxicity in divers. The focus provided by "ConVENTID" assists divers in maintaining their safety through awareness and preparedness.

6. Who developed a quantitative model for nitrogen loading and dive tables in the early twentieth century?

- A. Albert Einstein**
- B. Jacques Cousteau**
- C. John Scott Haldane**
- D. William Beebe**

John Scott Haldane is recognized for developing a quantitative model for nitrogen loading and dive tables in the early twentieth century. His pioneering work laid the foundation for our understanding of how gases, particularly nitrogen, behave during ascent and descent in diving contexts. Haldane used mathematical models to calculate nitrogen absorption and elimination in the body, which was crucial for creating safer diving practices and parameters. Through his research, he established the principles that led to the creation of dive tables, which help divers plan their underwater activities to avoid problems such as decompression sickness. His contributions are instrumental in the development of modern dive physiology and safety protocols. This focus on the physiological effects of pressure and gas exchange during diving distinguishes Haldane's work and its relevance in the field of diving and hyperbaric medicine.

7. What maximum depth can a diver use EAN32 with the adjusted maximum dive time provided?

A. 23 msw

B. 36 msw

C. 30 msw

D. 35 msw

The maximum depth a diver can safely use EAN32 (Enriched Air Nitrox 32) is determined by factors such as the oxygen exposure limits and the corresponding no-decompression limits for that mix of gas. EAN32 contains 32% oxygen and 68% nitrogen, which allows for extended bottom times compared to air but also requires careful management of exposure to oxygen to avoid toxicity. When diving with EAN32, the maximum operating depth is typically calculated by considering the partial pressure of oxygen (PPO2) that the diver would experience at that depth. The acceptable PPO2 limit is usually set around 1.4 ATA (atmospheres absolute). To find the maximum depth, you can use the formula: Maximum Depth (in meters) = (PPO2 limit / Fraction of Oxygen) - 10. For EAN32: $1.4 \text{ ATA} / 0.32 \text{ (fraction of oxygen)} = 4.375 \text{ ATA}$, which, when converted to depth, results in about 30 meters. Furthermore, 23 msw is a depth that provides a substantial margin for safety, as it is below the maximum safe working depth established for EAN32, allowing for longer no-decompression limits. Therefore,

8. To what altitude can standard NAUI dive tables be used?

A. 500 meters (1640 feet)

B. 300 meters (1000 feet)

C. 200 meters (656 feet)

D. 100 meters (328 feet)

The standard NAUI dive tables are designed to be used up to an altitude of 300 meters, or 1,000 feet. At this altitude, the effects of altitude on diving are accounted for, allowing divers to plan their dives safely and effectively while considering the changes in atmospheric pressure. Beyond this altitude, the tables may not provide accurate information, as the physiological effects on a diver can vary significantly due to decreased atmospheric pressure, which increases the risk of decompression sickness. Therefore, using the tables strictly within the limitations specified ensures that safety guidelines are adhered to, supporting the health and well-being of the diver.

9. How can you ensure that your dive gear is compatible with Nitrox?

- A. Consult the manufacturer for compatibility**
- B. Ensure all gear is specifically marked as Nitrox compatible**
- C. Use any gear as long as it is in good condition**
- D. Update gear only once every five years**

Ensuring that dive gear is compatible with Nitrox is crucial for safety and performance during dives. Gear specifically marked as Nitrox compatible guarantees that the materials and components can safely handle higher concentrations of oxygen found in Nitrox mixtures. Certain materials may degrade or be less reliable when exposed to increased oxygen levels, which can lead to equipment failure or dangerous situations underwater. Gear marked as Nitrox compatible has been tested and certified for use with these gas mixtures, ensuring that O-rings, hoses, and other components do not react adversely to elevated oxygen environments. This marking provides divers with a clear indication that the equipment will function safely under Nitrox conditions. Consulting the manufacturer about compatibility is indeed a wise practice, but relying solely on manufacturer information without the specific marking may not provide the assurance necessary for safety. Additionally, using any gear in good condition without assessing its compatibility can lead to serious risks since not all equipment can handle the unique challenges posed by Nitrox. Updating gear only once every five years does not consider the importance of regular checks or the possibility of more recent standards or materials that enhance safety with Nitrox diving.

10. What effect does altitude have on Nitrox diving?

- A. It has no effect on Nitrox diving**
- B. It increases dive duration**
- C. It alters nitrogen off-gassing rates**
- D. It lowers oxygen exposure**

Altitude has a significant impact on Nitrox diving, primarily because of how it influences nitrogen off-gassing rates. At higher altitudes, the atmospheric pressure decreases, which in turn affects your body's ability to eliminate dissolved gases, such as nitrogen, from your system after a dive. When diving with Nitrox, which has a higher proportion of oxygen and a lower proportion of nitrogen compared to air, the off-gassing of nitrogen is critical to address, especially when a diver ascends to a higher altitude. The lower pressure at altitude means that nitrogen off-gassing occurs more quickly compared to diving at sea level, potentially increasing the risk of decompression sickness if ascents and surface intervals are not appropriately managed. This understanding is crucial for divers who plan to dive in locations at altitude or who may ascend to high altitudes soon after diving. It is important for divers to adjust their dive plans, surface intervals, and ascent rates accordingly to accommodate this change, thereby ensuring safety during dives.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://nauinitroxdiver.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE