

National Groundwater Association (NGWA) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What does "sustainable yield" refer to in the context of groundwater?**
 - A. The minimum amount of water needed for human consumption**
 - B. The maximum amount of water that can be extracted without causing depletion**
 - C. The average annual rainfall in an area**
 - D. The total volume of water an aquifer can hold**
- 2. How does air surging work in well development?**
 - A. It uses compressed air to lift water out of the well**
 - B. It involves rapid cycling of air pressure to create turbulence in the water**
 - C. It injects water into the well under high pressure**
 - D. It allows air to continuously flow through the aquifer**
- 3. What does "rawhiding" in well development entail?**
 - A. Pumping water to the top of the well and letting it flow back**
 - B. Injecting chemicals to break down mud**
 - C. Using a surging block to create pressure**
 - D. Pumping higher than normal to agitate sediments**
- 4. What characterizes a confined aquifer?**
 - A. It is under atmospheric pressure at all times**
 - B. It is bounded by less permeable materials and is under pressure**
 - C. It only contains rainwater**
 - D. It is located near lakes and rivers**
- 5. What role does the rotary table play in a drill rig?**
 - A. It supports the weight of the drill string**
 - B. It provides rotational power for the drill pipe and bit assembly**
 - C. It circulates drilling fluid**
 - D. It stabilizes the rig during drilling operations**

6. What is a rotary top-head drive?

- A. A method for monitoring drilling fluid properties**
- B. A type of rig with hydraulic drive at the top of the drill pipe**
- C. A component used to stabilize the drill rig**
- D. A tool for measuring the depth of boreholes**

7. What parameters are typically assessed in a groundwater quality report?

- A. pH, temperature, and rainfall amounts**
- B. pH, temperature, electrical conductivity, and concentrations of contaminants**
- C. Electrical conductivity, total dissolved solids, and dissolved oxygen**
- D. Chlorophyll levels, humidity, and soil erosion**

8. What is the potential impact of over-extracting groundwater?

- A. Increased groundwater levels in aquifers**
- B. Decreased availability of water for future use**
- C. Improvement of soil fertility**
- D. Enhanced natural ecosystems**

9. What is the main process involved in the hydrological cycle?

- A. Condensation and precipitation only**
- B. Evaporation, precipitation, and transpiration**
- C. Only the flow of water in rivers**
- D. Surface runoff and groundwater absorption**

10. What can increased runoff lead to in terms of groundwater?

- A. Decreased pollution levels**
- B. Lower groundwater recharge rates**
- C. More consistent water table levels**
- D. Reduction in groundwater quality**

Answers

SAMPLE

1. B
2. B
3. A
4. B
5. B
6. B
7. B
8. B
9. B
10. D

SAMPLE

Explanations

SAMPLE

1. What does "sustainable yield" refer to in the context of groundwater?

- A. The minimum amount of water needed for human consumption
- B. The maximum amount of water that can be extracted without causing depletion**
- C. The average annual rainfall in an area
- D. The total volume of water an aquifer can hold

"Sustainable yield" is a critical concept in the management of groundwater resources. It refers to the maximum amount of groundwater that can be extracted from an aquifer on a long-term basis without causing depletion of the resource. This balance is essential for maintaining the health of the aquifer and surrounding ecosystems, ensuring that the groundwater can replenish through natural processes such as precipitation and infiltration. This concept takes into consideration various factors, including the rate of recharge of the aquifer, the existing water levels, and the impact of extraction on the environment and community. While other options such as the minimum amount of water for human consumption or the total volume of water an aquifer can hold mention important aspects of water use and aquifer dynamics, they do not encapsulate the principles of sustainable extraction that define sustainable yield. Likewise, average annual rainfall pertains to surface water availability rather than the sustainable management of groundwater resources. Therefore, the notion of sustainable yield specifically addresses the balance between usage and renewal, highlighting the importance of responsible groundwater management practices.

2. How does air surging work in well development?

- A. It uses compressed air to lift water out of the well
- B. It involves rapid cycling of air pressure to create turbulence in the water**
- C. It injects water into the well under high pressure
- D. It allows air to continuously flow through the aquifer

Air surging in well development primarily works by using compressed air that is rapidly cycled in and out, creating turbulence in the water column within the well. This turbulence helps to dislodge fine particles and sediments that may be clogging the well screen or surrounding aquifer materials. By stirring up the surrounding water and sediments, it leads to improved water quality and enhances the yield of the well. The effectiveness of this method lies in its ability to generate changes in velocity and flow patterns, which facilitate the removal of particulates and adequately clean the well. This process is essential in ensuring that the well operates efficiently and maintains a high flow rate by preventing sediment buildup. Other methods such as continuously injecting water under high pressure are not related to the air surging process, as they focus on different approaches for well rehabilitation and development. Additionally, continuous air flow would not create the necessary conditions for effective sediment removal as it lacks the crucial aspect of turbulence and pressure cycling that characterizes air surging.

3. What does "rawhiding" in well development entail?

- A. Pumping water to the top of the well and letting it flow back**
- B. Injecting chemicals to break down mud**
- C. Using a surging block to create pressure**
- D. Pumping higher than normal to agitate sediments**

"Rawhiding" in well development refers to the process of pumping water to the top of the well and allowing it to flow back into the well. This method helps to remove particulate matter and debris that may be present in the well. By allowing the water to flow back, it helps to clear out any clogs and improve water flow rates, thereby enhancing the overall functionality of the well. This process not only aids in cleaning the well but also in maintaining the structural integrity and hydraulic performance by promoting better aquifer recharge and water quality. In this context, rawhiding serves as a crucial technique to prepare the well for effective pumping and ensure that it operates efficiently in the long term.

4. What characterizes a confined aquifer?

- A. It is under atmospheric pressure at all times**
- B. It is bounded by less permeable materials and is under pressure**
- C. It only contains rainwater**
- D. It is located near lakes and rivers**

A confined aquifer is characterized by being enclosed by layers of less permeable materials, such as clay or rock, that create a barrier to the upward movement of water. This confinement allows the aquifer to be under pressure, distinguishing it from unconfined aquifers, which are directly recharged by surface water and are not under the same pressure conditions. The pressure within a confined aquifer can cause water to rise higher than the top of the aquifer when tapped by a well, often resulting in a free-flowing artesian well. The presence of confining layers ensures that water in a confined aquifer is less susceptible to contamination from surface sources and can lead to better water quality. Additionally, because confined aquifers are recharged through specific locations where the confining layer is permeable, they do not solely rely on local precipitation and can be influenced by hydrological conditions far from their location. Other choices, such as the aquifer being under atmospheric pressure, being filled only with rainwater, or being located near lakes and rivers, do not accurately encompass the unique characteristics of confined aquifers and ignore the significance of the confining layers that define them.

5. What role does the rotary table play in a drill rig?

- A. It supports the weight of the drill string
- B. It provides rotational power for the drill pipe and bit assembly**
- C. It circulates drilling fluid
- D. It stabilizes the rig during drilling operations

The rotary table is a crucial component of a drill rig primarily responsible for providing the rotational power needed for the drill pipe and bit assembly. This rotational motion is essential for drilling because the bit needs to turn against the rock formations to effectively penetrate them. The rotary table can engage with the drill string, allowing it to transmit the power generated by the rig's engine or drive system, thereby enabling the drill bit to cut through the subsurface material. In addition to enabling rotation, the rotary table allows for the adjustment of the drill string's orientation, which is important for directional drilling and ensuring that the well is drilled at the intended angle. Such versatility in providing both rotation and adjustment makes it a vital part of the drilling process. The other options refer to different functions that are performed by other components of the drill rig rather than the rotary table itself.

6. What is a rotary top-head drive?

- A. A method for monitoring drilling fluid properties
- B. A type of rig with hydraulic drive at the top of the drill pipe**
- C. A component used to stabilize the drill rig
- D. A tool for measuring the depth of boreholes

A rotary top-head drive refers to a specific type of drilling rig configuration where the driving mechanism for the drill is located at the top of the drill string. This setup is designed to efficiently transfer rotational force directly from the motor to the drill bit, enhancing the effectiveness of the drilling operation. The hydraulic drives at the top of the drill pipe provide significant torque and allow for greater control and adaptability in various drilling environments. This system is particularly advantageous in rotary drilling, as it enables better torque transmission, reduces the weight on the drill bit, and improves the overall efficiency of the drilling process. Such rigs are often used in applications where deep boreholes are required, making this mechanism an essential feature in many drilling operations used in groundwater extraction, mining, and other subsurface explorations.

7. What parameters are typically assessed in a groundwater quality report?

- A. pH, temperature, and rainfall amounts
- B. pH, temperature, electrical conductivity, and concentrations of contaminants**
- C. Electrical conductivity, total dissolved solids, and dissolved oxygen
- D. Chlorophyll levels, humidity, and soil erosion

The assessment of groundwater quality involves several key parameters that provide insights into the chemical and physical characteristics of groundwater. The correct choice highlights critical aspects such as pH, temperature, electrical conductivity, and concentrations of contaminants. Monitoring pH is vital because it influences the solubility and mobility of pollutants, as well as the biological activity in the groundwater system. Temperature can affect the chemical reaction rates and biological processes, serving as an important parameter in assessing groundwater quality. Electrical conductivity is a measure of the water's ability to conduct electricity, which is directly related to the concentration of dissolved ions. Higher conductivity values often indicate increased levels of salts and potential contaminants. Assessing the concentrations of contaminants is crucial for understanding the safety and usability of groundwater resources, as it directly relates to public health and environmental concerns. The other choices include parameters that may not pertain specifically to groundwater quality assessment or fail to include the most relevant indicators. While electrical conductivity, total dissolved solids, and dissolved oxygen are important, they do not encompass the complete range of necessary parameters like pH and specific contaminant concentrations. Similarly, the inclusion of chlorophyll levels, humidity, and soil erosion is unrelated to the assessment of groundwater quality, focusing instead on surface conditions and ecosystems, which are outside the

8. What is the potential impact of over-extracting groundwater?

- A. Increased groundwater levels in aquifers
- B. Decreased availability of water for future use**
- C. Improvement of soil fertility
- D. Enhanced natural ecosystems

Over-extracting groundwater can lead to decreased availability of water for future use. When groundwater is drawn from aquifers faster than it can be replenished by natural processes such as precipitation or surface water infiltration, this can result in a decline in the overall water table. As the water table lowers, wells may become less productive or even go dry, which impacts not only the availability of water for current needs but also for future generations. This long-term depletion can lead to water scarcity, and communities may struggle to meet the demands for drinking water, irrigation, and industrial use, leading to increased competition for the remaining resources. In contrast, the other options suggest outcomes that are either unlikely or directly opposed to the realities of over-extraction. For instance, increased groundwater levels in aquifers would not occur; rather, consistent over-extraction causes levels to decline. Similarly, over-extraction is unlikely to improve soil fertility or enhance natural ecosystems, as both of these outcomes typically require a balance of water availability and healthy groundwater levels. Over-extraction can instead lead to negative environmental impacts, such as land subsidence and reduced streamflow, which can detrimentally affect local ecosystems.

9. What is the main process involved in the hydrological cycle?

- A. Condensation and precipitation only**
- B. Evaporation, precipitation, and transpiration**
- C. Only the flow of water in rivers**
- D. Surface runoff and groundwater absorption**

The main process involved in the hydrological cycle encompasses several key components that work together to circulate water through the environment. The correct answer includes evaporation, precipitation, and transpiration. Evaporation refers to the process where water from oceans, lakes, and rivers transitions into vapor and enters the atmosphere, primarily due to heat from the sun. Precipitation describes the return of water to the earth's surface, manifesting as rain, snow, sleet, or hail. Transpiration involves the release of water vapor from plants into the atmosphere, which is a significant part of the water cycle because it contributes to overall water vapor levels. These three processes are interrelated; for example, water evaporates, rises, cools and condenses to form clouds, and eventually falls back to the ground as precipitation. This cycle is essential for maintaining ecosystems and ensuring that water is available for people, wildlife, and plants. It highlights the interconnectedness of different environmental components and demonstrates how water is continuously recycled in nature. In contrast, focusing solely on condensation and precipitation ignores the crucial role of evaporation and transpiration in the water cycle. The flow of water in rivers, while important in the context of water movement, does not encapsulate the entire cycle.

10. What can increased runoff lead to in terms of groundwater?

- A. Decreased pollution levels**
- B. Lower groundwater recharge rates**
- C. More consistent water table levels**
- D. Reduction in groundwater quality**

Increased runoff primarily affects groundwater dynamics by leading to a reduction in groundwater quality. When heavy rain or rapid snowmelt causes more water to flow over the land surface, this runoff can transport various contaminants, such as fertilizers, pesticides, sediments, and other pollutants, into surface water bodies and potentially towards recharge areas for groundwater. The process of runoff can wash these substances into the groundwater system, degrading water quality. This is particularly significant in areas where the soil and vegetation do not adequately filter or retain these contaminants before they reach aquifers. As a result, the infiltration of polluted runoff can contribute to the deterioration of groundwater resources, making it crucial to manage land use and runoff to protect groundwater quality effectively. While lower groundwater recharge rates could also be a concern due to increased surface water flow potentially reducing the amount of water that actually infiltrates the ground, the direct link between increased runoff and the introduction of contaminants clearly points to a degradation of groundwater quality.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://natlgroundwaterassoc.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE