

National Electrical Code (NEC) Article 230 Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Can two family and multifamily dwellings have one set of service entrance conductors for common areas?**
 - A. Yes**
 - B. No**
 - C. Only for public areas**
 - D. Only with additional circuits**
- 2. What is the maximum distance apart that service entrance cables must be supported when maintained in contact with a building?**
 - A. 10 ft**
 - B. 12 ft**
 - C. 15 ft**
 - D. 20 ft**
- 3. What must be done to ensure compliance with NEC for service disconnects?**
 - A. They must be concealed from view**
 - B. They must be marked to clearly indicate the operation of the disconnect**
 - C. They can be unmarked**
 - D. Only the location needs to be noted**
- 4. Which wiring methods are permitted for service entrance conductors?**
 - A. Open wiring on insulators**
 - B. Type IGS cable**
 - C. Rigid metal conduit (RMC)**
 - D. All of the above**
- 5. How can service-entrance conductors be spliced or tapped?**
 - A. By any method approved by the NEC**
 - B. Only by clamped or bolted connections**
 - C. Using soldered connections**
 - D. By twisting wires together**

6. In regards to service disconnects, what is the differentiating factor for multiple installations?

- A. They must be in different locations**
- B. They must be grouped in a single location**
- C. They cannot exceed three per dwelling**
- D. They must connect to different phases**

7. What size should grounding electrode conductors be for service entrances?

- A. According to the manufacturer's specifications**
- B. According to NEC Table 250.66**
- C. Based on the size of the service panel**
- D. As determined by the local building authority**

8. What is the chief requirement when installing solar or fuel cell systems regarding connections to the service disconnecting means?

- A. They must be inspected yearly**
- B. They must be installed in accordance with service-entrance regulations**
- C. They can be connected without protection**
- D. They require special monitoring equipment**

9. What is meant by "service entrance conductors?"

- A. The conductors that connect the electric meter to the service panel.**
- B. The conductors that extend from the service point to the service equipment.**
- C. The cables installed to connect to the power transformer.**
- D. The wires leading to the outdoor lighting fixtures.**

10. What does NEC Article 230 require concerning bonding of service equipment?

- A. All service equipment must be bonded together**
- B. Only the main service panel must be bonded**
- C. No bonding is required for service equipment**
- D. Each piece of equipment must be bonded separately**

Answers

SAMPLE

1. A
2. C
3. B
4. D
5. B
6. B
7. B
8. B
9. B
10. A

SAMPLE

Explanations

SAMPLE

1. Can two family and multifamily dwellings have one set of service entrance conductors for common areas?

- A. Yes**
- B. No**
- C. Only for public areas**
- D. Only with additional circuits**

In the context of electrical installations for two-family and multifamily dwellings, it is permissible to have one set of service entrance conductors serving the common areas of the building, which is why the answer is correct. This arrangement is often seen in multifamily units where the common areas may include hallways, laundry rooms, and other shared facilities. Service entrance conductors are designed to handle the electricity required for multiple dwelling units, and when implemented correctly, they provide an efficient means of delivering power to both private living spaces and shared amenities. The National Electrical Code allows for this setup to minimize the complexity of electrical installations, as each unit can still receive its individual meter while benefiting from shared service infrastructure. The other options imply restrictions or conditions that are not necessary under the NEC guidelines. For example, stating that only public areas can use a single service entrance could undermine the practical applications of shared utility within private residence contexts. Similarly, suggesting that additional circuits are needed may complicate what is allowed under current standards and best practices. Therefore, the ability to utilize a single set of service conductors is both allowed and practical in these dwelling types.

2. What is the maximum distance apart that service entrance cables must be supported when maintained in contact with a building?

- A. 10 ft**
- B. 12 ft**
- C. 15 ft**
- D. 20 ft**

The correct answer indicates that service entrance cables must be supported at a maximum distance of 15 feet apart when they are maintained in contact with a building. This requirement is outlined in the National Electrical Code (NEC) to ensure safety and reliability of electrical installations. Proper support of service entrance cables helps prevent damage due to sagging or movement that can arise from environmental factors such as wind, ice, or vibration. Maintaining a distance of 15 feet between supports allows for effective management of these forces while providing the necessary access for maintenance and inspection. Additionally, this guideline is critical for preventing strain on the connections and ensuring that electrical systems are both safe and efficient. Proper adherence to these distances also helps minimize the risk of electrical hazards such as shorts or breaks in the insulation, promoting overall safety for both people and property. This dimension reflects industry standards established to enhance the integrity of electrical systems and is vital for compliance with the NEC.

3. What must be done to ensure compliance with NEC for service disconnects?

- A. They must be concealed from view
- B. They must be marked to clearly indicate the operation of the disconnect**
- C. They can be unmarked
- D. Only the location needs to be noted

Service disconnects must be marked to clearly indicate their operation to ensure compliance with the National Electrical Code (NEC). This marking requirement is essential for safety, as it allows individuals, including emergency responders and maintenance personnel, to quickly and easily identify how to operate the disconnect in case of an emergency or service interruption. Clear markings help prevent confusion and ensure that the correct procedure is followed when power needs to be turned off or restored. Marking service disconnects improves accessibility and visibility, which aligns with safety protocols observed in electrical installations. Proper labeling reduces the risk of shock and other hazards by ensuring that anyone interacting with the circuit is aware of how to safely operate the disconnecting means. This practice plays a vital role in electrical safety and code compliance, enhancing the overall integrity of the electrical system.

4. Which wiring methods are permitted for service entrance conductors?

- A. Open wiring on insulators
- B. Type IGS cable
- C. Rigid metal conduit (RMC)
- D. All of the above**

Service entrance conductors must be installed using wiring methods that ensure safety, durability, and compliance with the National Electrical Code. All of the options presented are acceptable methods for conducting electrical service to a building. Open wiring on insulators is one traditional method that allows for the installation of wires without any enclosing conduit. This technique is still used in specific applications, such as rural areas or for overhead service drops where suitable insulation and support are provided to protect the wires. Type IGS (Insulated Grounded Service) cable is specifically designed for service entrance applications. It has factory-installed insulation and can be direct buried or installed above ground, providing excellent protection against environmental factors while ensuring electrical safety. Rigid metal conduit (RMC) is another reliable method for protecting service entrance conductors. It provides robust mechanical protection and is corrosion-resistant, making it suitable for various installation conditions. RMC can be used in exposed locations and offers additional grounding benefits. Given that each option represents a legitimate method of installation under the NEC for service entrance conductors, the correct answer encompasses all methods listed, thus confirming that all are permissible.

5. How can service-entrance conductors be spliced or tapped?

- A. By any method approved by the NEC
- B. Only by clamped or bolted connections**
- C. Using soldered connections
- D. By twisting wires together

Service-entrance conductors are critical components in electrical installations, and their integrity is essential for safety and reliability. The National Electrical Code (NEC) has specific requirements regarding how these conductors can be spliced or tapped to ensure that connections maintain their strength, conductivity, and protection against environmental factors. When it comes to splicing or tapping service-entrance conductors, the NEC stipulates that the connections must use methods that provide both mechanical strength and an effective electrical connection. Clamped or bolted connections meet these criteria because they create a sturdy and reliable union between conductors. These types of connections are also less susceptible to corrosion and can withstand the mechanical stresses that service-entrance conductors might encounter. Other methods, such as twisting wires together or using soldered connections, do not provide the same level of security and may not hold up over time when subjected to the stresses present in service-entrance applications. Hence, the NEC's emphasis on using clamped or bolted connections helps ensure the safety of the electrical system as a whole.

6. In regards to service disconnects, what is the differentiating factor for multiple installations?

- A. They must be in different locations
- B. They must be grouped in a single location**
- C. They cannot exceed three per dwelling
- D. They must connect to different phases

The correct choice emphasizes that service disconnects must be grouped in a single location when multiple installations are present. This requirement aligns with safety and accessibility standards established by the National Electrical Code (NEC). Having service disconnects in one location ensures that they can be easily accessed and operated during emergencies, maintenance, or servicing. This centralized arrangement helps improve safety, as it reduces the time needed to shut off power in case of a fault or other dangerous situation. Grouping disconnects in a single location also facilitates compliance with code requirements, ensuring proper labeling and easier identification of each disconnect for anyone working on or around the electrical system. By having disconnects consolidated, it minimizes confusion and enhances operational efficiency. Other options may imply different arrangements or numbers of disconnects that do not necessarily align with the NEC's emphasis on safety and operational practicality. Therefore, grouping service disconnects in one location serves a critical purpose in residential electrical installations, providing a clear method for managing electrical service safely and effectively.

7. What size should grounding electrode conductors be for service entrances?

- A. According to the manufacturer's specifications**
- B. According to NEC Table 250.66**
- C. Based on the size of the service panel**
- D. As determined by the local building authority**

The correct answer is based on NEC Table 250.66, which provides the requirements for the sizing of grounding electrode conductors (GEC) based on the size of the service-entrance conductors. This table is specifically designed to ensure that the grounding system is adequate for the current-carrying capabilities of the service conductors, helping to protect both equipment and personnel from electrical faults. Using this table, an electrician can determine the appropriate size of the grounding electrode conductor that corresponds to the size of the service conductors, ensuring compliance with the National Electrical Code. This is critical for both safety and effective operation of the electrical system. While manufacturer specifications, the size of the service panel, and determinations by local building authorities are important considerations in the overall installation process, they do not specifically dictate the sizing of the grounding electrode conductors as effectively as NEC Table 250.66 does. Therefore, for accurate and compliant sizing of grounding electrode conductors for service entrances, referencing NEC Table 250.66 is essential.

8. What is the chief requirement when installing solar or fuel cell systems regarding connections to the service disconnecting means?

- A. They must be inspected yearly**
- B. They must be installed in accordance with service-entrance regulations**
- C. They can be connected without protection**
- D. They require special monitoring equipment**

The correct choice highlights the importance of adherence to service-entrance regulations when installing solar or fuel cell systems. This requirement ensures that the connections to the service disconnecting means are made in a manner that meets safety standards and local code provisions outlined in the National Electrical Code (NEC). Proper installation according to these regulations is critical in ensuring system reliability, safety, and compliance with electrical standards that govern how energy systems connect to existing electrical infrastructures. These regulations stipulate detailed criteria that must be followed to safeguard against hazards such as overcurrent, short circuits, and other risks associated with the interactions between solar or fuel cell systems and the utility grid. By requiring implementation in accordance with service-entrance regulations, it assures that installations are equipped to manage potential energy flows safely and effectively. The other choices, while they may represent considerations in electrical work, do not capture the fundamental requirement of compliance with established service-entrance regulations. Ensuring structural and operational integrity through oversight and adherence to codes is vital for any device connected to the electrical service, especially newer technologies like solar panels or fuel cells, which require careful integration into existing power systems.

9. What is meant by “service entrance conductors?”

- A. The conductors that connect the electric meter to the service panel.
- B. The conductors that extend from the service point to the service equipment.**
- C. The cables installed to connect to the power transformer.
- D. The wires leading to the outdoor lighting fixtures.

“Service entrance conductors” refer to the conductors that extend from the service point, which is typically the location where the utility company’s service mains connect to the building, to the service equipment, such as a distribution panel or breaker box. This definition encompasses all conductors that facilitate the incoming electrical service into a building, ensuring power is transmitted safely and effectively. The service entrance conductors are crucial for establishing a secure electrical connection that meets the NEC requirements for compliance, safety, and functionality. These conductors carry the electrical current from the utility service, making them an essential component of the electrical system that powers residential or commercial buildings. In contrast, the other options describe aspects related to electrical systems but do not define service entrance conductors accurately. For example, while connecting the electric meter to the service panel is part of the overall electrical setup, it does not encompass the entirety of what service entrance conductors are and where they extend to.

10. What does NEC Article 230 require concerning bonding of service equipment?

- A. All service equipment must be bonded together**
- B. Only the main service panel must be bonded
- C. No bonding is required for service equipment
- D. Each piece of equipment must be bonded separately

NEC Article 230 outlines the requirements for bonding of service equipment to ensure safety and reliability in electrical installations. When stating that all service equipment must be bonded together, the code emphasizes the importance of creating a continuous conductive path to prevent potential differences in voltage among different pieces of equipment. This is essential to minimize the risk of electrical shock and equipment damage. The bonding process helps ensure that fault currents have an effective path to ground, enhancing the overall safety of the electrical system. This requirement applies to various components, including the service entrance, grounding conductors, and any other associated equipment, which must be interconnected to establish a common reference point for electrical potential. By ensuring that all service equipment is bonded together, the system is designed to function harmoniously and safely, thereby reducing the chances of electrical hazards in the environment.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://necarticle230.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE