

MTSA Advanced Physiology For Nursing Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which structure is associated with ribosomes attached to the rough endoplasmic reticulum?**
 - A. Smooth endoplasmic reticulum**
 - B. Golgi apparatus**
 - C. Protein synthesis**
 - D. Cell membrane integrity**

- 2. Which type of cells are considered insulin-independent?**
 - A. Neurons**
 - B. Hepatocytes**
 - C. Proximal tubules of kidneys**
 - D. Small intestine**

- 3. What are the primary hydrogen shuttles in the cellular respiration process?**
 - A. NADH and FADH₂**
 - B. ATP and ADP**
 - C. Glucose and Fructose**
 - D. Acetyl-CoA and Citrate**

- 4. What is the most abundant intracellular cation in the human body?**
 - A. Calcium (Ca²⁺)**
 - B. Magnesium (Mg²⁺)**
 - C. Potassium (K⁺)**
 - D. Sodium (Na⁺)**

- 5. What happens to proteins synthesized by ribosomes in the rough endoplasmic reticulum?**
 - A. They are stored in the nucleus**
 - B. They are secreted outside the cell**
 - C. They are degraded in the cytosol**
 - D. They remain attached to the ER**

6. What is the clinical impact of hyperkalemia on membrane potential?

- A. Membrane hyperpolarization**
- B. Membrane depolarization**
- C. Membrane stabilization**
- D. Membrane oscillation**

7. What is the significance of NADH and FADH₂ in metabolism?

- A. They are waste products**
- B. They serve as energy carriers**
- C. They enhance neurotransmitter function**
- D. They regulate enzyme activity**

8. In secondary active counter-transport, how do the solutes move?

- A. In the same direction**
- B. In opposite directions**
- C. Simultaneously with no specific direction**
- D. Only one solute moves**

9. What does the symbol "Cal" stand for in thermodynamics?

- A. Amount of heat required to raise 1 gm of H₂O 1°C**
- B. Amount of heat required to raise 1 liter of H₂O 1°C**
- C. Amount of heat required to raise 1000 gm of H₂O 1°C**
- D. Amount of heat required to raise 500 gm of H₂O 1°C**

10. What contributes to the osmolarity of body fluids?

- A. Electrolyte concentration**
- B. Colloid osmotic pressure**
- C. Fluid volume**
- D. Temperature of the fluids**

Answers

SAMPLE

1. C
2. A
3. A
4. C
5. B
6. B
7. B
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. Which structure is associated with ribosomes attached to the rough endoplasmic reticulum?

- A. Smooth endoplasmic reticulum**
- B. Golgi apparatus**
- C. Protein synthesis**
- D. Cell membrane integrity**

The rough endoplasmic reticulum (RER) is characterized by the presence of ribosomes on its cytoplasmic surface, which gives it a "rough" appearance. These ribosomes play a crucial role in protein synthesis, translating messenger RNA into polypeptide chains that will eventually fold into functional proteins. When ribosomes on the RER synthesize proteins, those proteins usually enter the lumen of the rough endoplasmic reticulum for further modifications and folding. This process is essential for the production of proteins destined for secretion, incorporation into the cell membrane, or delivery to lysosomes. Therefore, the association of ribosomes with the rough endoplasmic reticulum is directly related to the process of protein synthesis, making it the correct answer. Understanding this relationship highlights the importance of the rough endoplasmic reticulum in the broader cellular context, particularly regarding how cells manage and produce proteins necessary for their operations.

2. Which type of cells are considered insulin-independent?

- A. Neurons**
- B. Hepatocytes**
- C. Proximal tubules of kidneys**
- D. Small intestine**

Insulin-independent cells are those that do not require insulin for the uptake of glucose. Neurons are a prime example of such cells; they can absorb glucose directly from the bloodstream without the need for insulin. This characteristic is crucial because the brain relies on a continuous supply of glucose as its primary energy source. In contrast, other cell types listed have different metabolic regulations. Hepatocytes do respond to insulin for glycogen synthesis and glucose uptake, making them insulin-dependent in this context. Proximal tubules of the kidneys have a unique role in glucose reabsorption that also involves different transport mechanisms, while the cells in the small intestine primarily deal with the absorption of nutrients rather than direct glucose uptake influenced by insulin. Thus, among the options provided, neurons are recognized specifically as insulin-independent cells, making this the correct choice.

3. What are the primary hydrogen shuttles in the cellular respiration process?

- A. NADH and FADH₂**
- B. ATP and ADP**
- C. Glucose and Fructose**
- D. Acetyl-CoA and Citrate**

NADH and FADH₂ serve as the primary hydrogen shuttles during the process of cellular respiration. These molecules are crucial in transferring electrons and protons, derived from the catabolism of nutrients, primarily glucose. During glycolysis and the Krebs cycle (also known as the citric acid cycle), NAD⁺ is reduced to NADH, and FAD is reduced to FADH₂, allowing them to carry high-energy electrons to the electron transport chain. In the electron transport chain, the electrons from NADH and FADH₂ are passed along a series of proteins, contributing to the synthesis of ATP through oxidative phosphorylation. This process generates a proton gradient across the inner mitochondrial membrane, which drives ATP synthesis as protons flow back into the mitochondrial matrix through ATP synthase. Other options such as ATP and ADP play a role in energy transfer but are not primarily involved in shuttling hydrogen during respiration. Similarly, glucose and fructose are substrates for cellular respiration rather than carriers of hydrogen, and Acetyl-CoA and citrate are intermediates in metabolic pathways but do not function as hydrogen shuttles. Thus, NADH and FADH₂ are vital for the efficient production of energy within cells via their role in

4. What is the most abundant intracellular cation in the human body?

- A. Calcium (Ca²⁺)**
- B. Magnesium (Mg²⁺)**
- C. Potassium (K⁺)**
- D. Sodium (Na⁺)**

Potassium (K⁺) is recognized as the most abundant intracellular cation in the human body. This is primarily because it plays a crucial role in maintaining the membrane potential of cells and is vital for various cellular functions, including muscle contraction, nerve impulse transmission, and enzymatic reactions. In contrast to sodium, which is more prevalent outside the cell (extracellular), potassium is predominantly found within cells due to the activity of the sodium-potassium pump (Na⁺/K⁺ ATPase). This pump actively transports potassium ions into the cell while moving sodium ions out, ensuring that potassium levels remain high intracellularly. The significance of potassium extends to its involvement in the regulation of key physiological processes, such as heart function and blood pressure regulation. An adequate balance of potassium is essential for overall cellular health and function, making it integral to physiological homeostasis. Calcium and magnesium, while important cations in cellular function, are present in lesser amounts compared to potassium within cells. Calcium primarily influences signaling pathways and muscle contraction but is not as abundant as potassium. Similarly, magnesium, although central to many enzymatic reactions, is also less concentrated in comparison. Therefore, potassium's status as the most abundant intracellular cation emphasizes its critical role in maintaining cellular health and function.

5. What happens to proteins synthesized by ribosomes in the rough endoplasmic reticulum?

- A. They are stored in the nucleus**
- B. They are secreted outside the cell**
- C. They are degraded in the cytosol**
- D. They remain attached to the ER**

Proteins synthesized by ribosomes in the rough endoplasmic reticulum (RER) typically undergo a specific process that often leads to their secretion outside the cell. The rough endoplasmic reticulum is studded with ribosomes where protein synthesis occurs, particularly for proteins that are destined for secretion or for use in the cell membrane or organelles. Once synthesized, these proteins enter the lumen of the RER, where they undergo folding and post-translational modifications. From there, they are packaged into vesicles that bud off from the ER and transport them to the Golgi apparatus. In the Golgi, the proteins can be further modified, sorted, and then either secreted from the cell by exocytosis or sent to specific locations within the cell. This path effectively links the rough endoplasmic reticulum to the secretory pathway, explaining the mechanism behind protein secretion. Therefore, the correct answer highlights the primary fate of proteins synthesized in the RER, emphasizing their role in the export process that is vital for cellular communication and function.

6. What is the clinical impact of hyperkalemia on membrane potential?

- A. Membrane hyperpolarization**
- B. Membrane depolarization**
- C. Membrane stabilization**
- D. Membrane oscillation**

Hyperkalemia refers to an elevated level of potassium ions (K^+) in the blood. The normal concentration of potassium outside the cells is essential for maintaining the membrane potential, which is crucial for the proper functioning of nerve and muscle cells. Under conditions of hyperkalemia, the increased extracellular potassium concentration reduces the concentration gradient across the cell membrane. Since the resting membrane potential is largely determined by the potassium equilibrium potential, a higher concentration of potassium outside the cell results in a decrease in the negative charge inside the cell. This change leads to membrane depolarization. In a depolarized state, cells may become less responsive or closer to reaching the threshold for action potentials. This effect can impair muscle contraction, lead to potential cardiac arrhythmias, and impact overall neuromuscular function. Understanding the role of extracellular potassium in shaping the membrane potential is critical for managing and treating conditions associated with potassium imbalance, emphasizing the importance of monitoring potassium levels in clinical practice.

7. What is the significance of NADH and FADH₂ in metabolism?

- A. They are waste products
- B. They serve as energy carriers**
- C. They enhance neurotransmitter function
- D. They regulate enzyme activity

NADH and FADH₂ play critical roles in metabolism, primarily as energy carriers. During the processes of glycolysis and the citric acid cycle, these molecules are generated as cells metabolize carbohydrates, fats, and proteins. Both NADH and FADH₂ are electron carriers that store energy used to generate adenosine triphosphate (ATP), which is the primary energy currency of the cell. In the mitochondrial electron transport chain, NADH and FADH₂ donate electrons, leading to a series of reactions that ultimately culminate in the production of ATP through oxidative phosphorylation. This makes them indispensable for cellular energy production, enabling various biochemical processes that are essential for survival and proper functioning of the cells. Understanding the role of NADH and FADH₂ as energy carriers helps to highlight their importance in metabolic pathways, distinguishing them from waste products, neurotransmitter enhancers, or regulators of enzyme activity, as these functions do not capture their primary role in energy transfer and ATP generation.

8. In secondary active counter-transport, how do the solutes move?

- A. In the same direction
- B. In opposite directions**
- C. Simultaneously with no specific direction
- D. Only one solute moves

Secondary active counter-transport involves the movement of solutes across a cell membrane using the energy created by the movement of another solute. In this process, one solute moves into the cell while another moves out, which establishes a concentration gradient for the substances involved. This mechanism is dependent on the gradient created by primary active transport, which uses ATP to move ions, typically sodium or hydrogen ions, across the membrane. When one solute moves down its concentration gradient, it provides the energy required to move another solute against its concentration gradient. Therefore, in secondary active counter-transport, solutes move in opposite directions. This allows cells to efficiently maintain homeostasis and control the concentrations of various substances within the cytosol and extracellular environment.

9. What does the symbol "Cal" stand for in thermodynamics?

- A. Amount of heat required to raise 1 gm of H₂O 1°C
- B. Amount of heat required to raise 1 liter of H₂O 1°C
- C. Amount of heat required to raise 1000 gm of H₂O 1°C**
- D. Amount of heat required to raise 500 gm of H₂O 1°C

The symbol "Cal" in thermodynamics represents a calorie, which is specifically defined as the amount of heat required to raise the temperature of 1 gram of water by 1 degree Celsius. However, in the context of your answer, "Cal" often refers to the kilocalorie (kcal), which is equal to 1000 calories. Therefore, the correct answer relates to the amount of heat required to raise 1000 grams (or 1 kilogram) of water by 1 degree Celsius. This definition is particularly important in nutritional science and in fields that involve heat transfer and metabolism, as it directly connects these concepts to the physiological needs and energy expenditures of living organisms. In essence, understanding how many calories (or kilocalories) are required for various physiological processes is crucial for healthcare professionals, particularly in nursing practice where patient dietary considerations and metabolic rates are frequently assessed.

10. What contributes to the osmolarity of body fluids?

- A. Electrolyte concentration
- B. Colloid osmotic pressure**
- C. Fluid volume
- D. Temperature of the fluids

The correct answer relates to the concept of electrolyte concentration and its direct impact on osmolarity. Osmolarity is defined as the measure of solute concentration in a solution, expressed as osmoles of solute per liter of solution. In body fluids, the primary contributors to osmolarity are electrolytes, such as sodium, potassium, chloride, and bicarbonate ions. While colloid osmotic pressure is a relevant concept in discussing the movement of fluids in and out of capillaries due to proteins, it is not the primary contributor to the overall osmolarity of body fluids. Instead, osmolarity is primarily driven by the total concentration of all solutes, including both electrolytes and non-electrolytes in the liquid phase. Fluid volume and temperature do not directly determine osmolarity. Fluid volume pertains to the amount of liquid present, which affects hemodynamics but does not influence the concentration of solutes. Temperature can influence the physical properties of solutions but does not alter the solute concentrations significantly in a physiological context. Therefore, the concentration of electrolytes in body fluids is the main factor that affects the osmolarity, making it the fundamental aspect to consider in this context.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://mtsaadvphysiolnursing.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE