
MongoDB Associate
Developer Practice Exam
(Sample)
Study Guide

Everything you need from our exam experts!

Sample study guide. Visit https://mongodbassociatedev.examzify.com

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any
means, graphic, electronic, or mechanical, including photocopying,
recording, web distribution, taping, or by any information storage retrieval
system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable
sources accurate, complete, and timely information about this product.

1Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

Questions

2Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

1. How do you delete the default _id index?
A. By using the dropIndex method
B. You cannot delete this index
C. By manually updating the collection
D. By running a specific command line operation

2. Is hiding an index the same as deleting an index?
A. Yes, they are equivalent actions
B. No, hiding does not remove the index
C. Yes, both actions will free up resources
D. No, deletion is permanent, while hiding can be reversed

3. What will the following query return? db.routes.find({
$and: [{ $or: [{ dst_airport: "IST" }, { src_airport: "IST" }] },
{ $or: [{ stops: 0 }, { airline.name: "Turkish Airlines"}] },] })
A. All nonstop flights from Istanbul airport
B. All flights either departing or landing at Istanbul airport that

are operated by Turkish Airlines or have zero stops
C. All flights that have at least one stop
D. All flights with no specified conditions

4. In MongoDB, why should transactions be used when
updating account balances across multiple collections?
A. They provide faster updates
B. They ensure operations are atomic across multiple

documents
C. They eliminate the need for aggregation pipelines
D. They reduce storage requirements

5. Are indexes created automatically based on usage patterns
in MongoDB?
A. Yes, always
B. No, they must be created manually
C. Only for compound indexes
D. Only when specified by the user

3Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

6. What parameters can be provided to the countDocuments()
method?
A. Only a query document
B. A query document and options document
C. Only an options document
D. No parameters are needed

7. Which of the following queries correctly uses the
$elemMatch operator?
A. { "items": { $elemMatch: { name: "item1", quantity: { $gt: 0

} } }}
B. { "items": { $elemMatch: { name: "item1" }} }
C. { "items": { $and: [{ name: "item1" }, { quantity: { $gt: 0 } }]

}}
D. { "items": { name: "item1" }}

8. How does the Performance Advisor analyze collections in
MongoDB?
A. By tracking user interactions
B. By monitoring query performance
C. By reviewing system resource usage
D. By evaluating schema structures

9. Data that is assessed together should be...
A. stored separately
B. stored in different databases
C. stored together
D. archived for later use

10. What is the function of the upsert option in MongoDB
operations?
A. It updates all matching documents
B. It inspects a document before making changes
C. It inserts a document if none exist based on the query
D. It creates a backup of the document before updating

4Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

Answers

5Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

1. B
2. B
3. B
4. B
5. B
6. B
7. A
8. B
9. C
10. C

6Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

Explanations

7Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

1. How do you delete the default _id index?
A. By using the dropIndex method
B. You cannot delete this index
C. By manually updating the collection
D. By running a specific command line operation

The default _id index in MongoDB is a unique index created automatically for the _id field
of every document in a collection. This index is crucial for the functioning of MongoDB
because it ensures that each document has a unique identifier, which is fundamental for
document retrieval and data integrity. Option B, stating that you cannot delete this
index, is correct because MongoDB enforces the _id field as a unique key for each
document in the collection. The system depends on this index to ensure that no two
documents can share the same _id value. Consequently, any attempt to manually drop or
alter this default index would not be supported by MongoDB, as it is integral to the
structure and operational mechanics of the database. This characteristic of the _id index
emphasizes the importance of having a unique identifier for documents in collections
and helps maintain database consistency and performance. The other options are not
valid given that they suggest ways to modify or delete the _id index, which goes against
MongoDB's design principles.

2. Is hiding an index the same as deleting an index?
A. Yes, they are equivalent actions
B. No, hiding does not remove the index
C. Yes, both actions will free up resources
D. No, deletion is permanent, while hiding can be reversed

Hiding an index is fundamentally different from deleting an index. When an index is
hidden, it is still present in the database but is not used by the query planner to execute
queries. This means that while the hidden index can be retained for potential future use
or for testing purposes, it does not contribute to the performance of query operations
until it is made visible again. On the other hand, deleting an index completely removes it
from the database, including all its associated resources. Once deleted, it cannot be
reverted or reinstated without creating a new index. This permanence is a critical
distinction: hiding maintains the structure of the index and its metadata, allowing for
flexibility in managing query performance without the need to recreate the index later.
Therefore, the statement that hiding does not remove the index captures the essence of
how hiding and deleting differ. Hiding allows for temporary exclusion from query
planning, while deletion is a final, irreversible action.

8Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

3. What will the following query return? db.routes.find({
$and: [{ $or: [{ dst_airport: "IST" }, { src_airport: "IST" }] },
{ $or: [{ stops: 0 }, { airline.name: "Turkish Airlines"}] },] })
A. All nonstop flights from Istanbul airport
B. All flights either departing or landing at Istanbul airport that

are operated by Turkish Airlines or have zero stops
C. All flights that have at least one stop
D. All flights with no specified conditions

The query presented is structured to find documents from the "routes" collection that
satisfy a combination of conditions using the logical operators $and and $or. The first
part of the query uses $or to look for routes where either the destination airport
(dst_airport) is "IST" or the source airport (src_airport) is also "IST". This means it will
retrieve all flights that either land at or depart from Istanbul airport. The second part of
the query again employs $or, but focuses on flights that either have no stops (stops: 0) or
are operated by "Turkish Airlines" (airline.name: "Turkish Airlines"). By combining
these two conditions with $and, the query effectively captures all flights that either
depart from or land at Istanbul airport and fulfills at least one of the criteria from the
second part, which are either being nonstop flights or operated by Turkish Airlines.
Thus, the overall result of the query is that it will return all flights that are either
departing from or landing at Istanbul airport and are either nonstop or operated by
Turkish Airlines. This aligns perfectly with the interpretation provided in the answer,
making it the correct choice.

4. In MongoDB, why should transactions be used when
updating account balances across multiple collections?
A. They provide faster updates
B. They ensure operations are atomic across multiple

documents
C. They eliminate the need for aggregation pipelines
D. They reduce storage requirements

Using transactions in MongoDB to update account balances across multiple collections is
crucial because they ensure operations are atomic across multiple documents. This
means that either all the operations in the transaction are completed successfully, or
none of them are applied at all. In the context of updating account balances, this
atomicity is vital. For instance, if you are deducting an amount from one account and
adding it to another, you want to make sure that both operations succeed or fail together.
If one operation succeeds but the other fails, it could lead to data inconsistencies, such
as an incorrect balance in either account. Transactions prevent this scenario by allowing
you to maintain the integrity and consistency of your data throughout the entire process.
The other options do not align with the primary purpose of transactions. Faster updates,
elimination of aggregation pipelines, and reduced storage requirements are not
guaranteed benefits of using transactions in MongoDB. Transactions focus on
maintaining data consistency and integrity rather than performance enhancements or
storage optimizations.

9Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

5. Are indexes created automatically based on usage patterns
in MongoDB?
A. Yes, always
B. No, they must be created manually
C. Only for compound indexes
D. Only when specified by the user

In MongoDB, indexes are not created automatically based on usage patterns. Instead,
they must be created manually by the developer or database administrator. This manual
process allows for precise control over which fields are indexed, enabling optimized
query performance tailored to the specific needs of the application. By requiring that
indexes be defined explicitly, MongoDB empowers users to understand and manage the
performance trade-offs associated with index creation, such as increased storage
requirements and potentially slower write operations. The other options suggest varying
degrees of automatic behavior for index creation, which does not align with MongoDB's
operational model. Specifically, while it can analyze query performance and suggest
indexes, it remains the user's responsibility to implement these suggestions and create
indexes as deemed necessary for their application's performance.

6. What parameters can be provided to the countDocuments()
method?
A. Only a query document
B. A query document and options document
C. Only an options document
D. No parameters are needed

The countDocuments() method in MongoDB provides a way to count the number of
documents in a collection that match a specified query. The correct answer highlights
that it can accept both a query document and an options document. When using
countDocuments(), the query document allows you to specify criteria that filter the
documents to count based on given conditions, such as matching a specific field value or
applying multiple conditions with logical operators. This enables users to perform
precise counts that align with their querying needs. Additionally, the options document
can include several configurations that influence how the count is performed. For
example, options can include the "collation" parameter, which allows the count to be
case-insensitive or locale-specific, thereby enhancing the functionality and versatility of
the method to cater to specific use cases. Thus, by accepting both a query document and
an options document, countDocuments() empowers developers to efficiently obtain
counts that are tailored to their specific requirements.

10Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

7. Which of the following queries correctly uses the
$elemMatch operator?
A. { "items": { $elemMatch: { name: "item1", quantity: { $gt: 0

} } }}
B. { "items": { $elemMatch: { name: "item1" }} }
C. { "items": { $and: [{ name: "item1" }, { quantity: { $gt: 0 } }]

}}
D. { "items": { name: "item1" }}

The use of the $elemMatch operator is specifically designed for querying arrays in a
document to ensure that the elements within those arrays meet multiple criteria. In the
context of the query given, the correct answer demonstrates this functionality effectively.
In the query that selects documents where the "items" array contains an element that
meets both of the specified conditions—having the name "item1" and having a quantity
greater than zero—$elemMatch is the correct operator to utilize. This operator not only
identifies the target element within the array but also asserts that both conditions apply
to the same array element. The written structure, `{ "items": { $elemMatch: { name:
"item1", quantity: { $gt: 0 } } }}`, ensures that the query only returns documents
containing an "items" array member where both the specified name and the quantity
condition are satisfied simultaneously, making it precise and powerful for such scenarios.
In contrast, while the other options present various query expressions for filtering arrays
or fields, they either do not consolidate the conditions to a single element within the
array (as seen in options that utilize $and or straightforward field queries) or would
result in less specificity for the desired outcome. Hence, the chosen query correctly
represents the

8. How does the Performance Advisor analyze collections in
MongoDB?
A. By tracking user interactions
B. By monitoring query performance
C. By reviewing system resource usage
D. By evaluating schema structures

The Performance Advisor in MongoDB primarily analyzes collections by monitoring query
performance. This tool is specifically designed to enhance the efficiency of your database
by identifying slow queries, which may lead to performance issues. It gathers data on how
queries interact with the database, including which queries take the longest, their
frequency, and whether they are utilizing indexes effectively. Through this monitoring
process, the Performance Advisor can provide insights and recommendations for
optimizing queries, such as suggesting appropriate indexes that could improve
performance. By focusing on query performance, users can make informed decisions
about how to enhance their application's speed and efficiency when interacting with the
database, leading to overall better system responsiveness. While other options discuss
factors that can influence performance, such as user interactions, resource usage, or
schema structures, the distinctive focus of the Performance Advisor is on how queries are
executed and how they can be improved. Thus, monitoring query performance is central
to its function.

11Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

9. Data that is assessed together should be...
A. stored separately
B. stored in different databases
C. stored together
D. archived for later use

Data that is assessed together should be stored together because this approach aids in
reducing complexity during data retrieval, enhances performance, and maintains the
logical relationships between data elements. When data is stored together, it minimizes
the need for complex joins or data lookups across multiple sources, which can slow down
query performance. In many database designs, particularly in NoSQL databases like
MongoDB, the idea is to store related information in close proximity to one another,
often within the same document or collection. This not only simplifies the data model but
also allows for more efficient access patterns, as the associated data can be retrieved in a
single read operation. This practice supports efficient data access patterns and can
improve application performance significantly, making it crucial to consider how data
interrelations affect storage strategies. Storing related data together aligns with
principles of data locality and optimal access in NoSQL databases.

10. What is the function of the upsert option in MongoDB
operations?
A. It updates all matching documents
B. It inspects a document before making changes
C. It inserts a document if none exist based on the query
D. It creates a backup of the document before updating

The upsert option in MongoDB operations serves the important function of inserting a
new document if no documents match the specified query criteria. When you perform an
update operation with the upsert option set to true, MongoDB first attempts to find a
document that meets the query's criteria. If such a document is found, it gets updated
with the new data specified in the update operation. Conversely, if no matching
document exists, MongoDB will create a new document, incorporating the fields from the
update statement as well as any fields specified in the query. This feature is particularly
useful in scenarios where you want to ensure that a document either exists (and is
updated) or is created if it doesn’t. The use of upsert can help streamline the logic in
your application by reducing the need to perform separate check-and-insert operations,
allowing for a more efficient interaction with the database. In this context, the other
options do not capture the primary function of upsert. For instance, updating all
matching documents is a standard behavior of the update operations regardless of the
upsert option. Inspecting a document before making changes does not represent the
upsert functionality, as upsert inherently focuses on adding a document if none are
found. Additionally, creating a backup of a

 v-1752595193 | Page 12Sample study guide. Visit https://mongodbassociatedev.examzify.com for the full version

SA
M

PLE

