

MK2 Service Wide Examination (SWE) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Where should printed copies of the ECCM be maintained?**
 - A. Main Control**
 - B. All repair lockers**
 - C. Engineering Assist Location**
 - D. DCC**

- 2. When analyzing machinery, which of the following would indicate a problem with corrosion?**
 - A. Presence of aluminum**
 - B. Presence of iron**
 - C. Presence of tin**
 - D. Presence of magnesium**

- 3. How are filters in a hydraulic system typically rated?**
 - A. Millimeters**
 - B. Microns**
 - C. Grains**
 - D. Inches**

- 4. What is typically the expected percentage of tongue weight relative to GTWR?**
 - A. 5%**
 - B. 10%**
 - C. 15%**
 - D. 20%**

- 5. Where should the air intake for machinery spaces ideally be located?**
 - A. Near the engine exhaust**
 - B. Close to the main deck**
 - C. Aft of the machinery**
 - D. At the watch stations**

6. Which pressure is generally tested for hydraulic hoses?

- A. Static Pressure**
- B. Hydrostatic Test Pressure**
- C. Dynamic Pressure**
- D. Absolute Pressure**

7. Engines shall operate at what percentage of the CG Load when conducting performance tests?

- A. 70-80%**
- B. 80-90%**
- C. 90-100%**
- D. 50-60%**

8. Vacuum gauges indicate readings in which measurement unit?

- A. Atmospheres**
- B. Hg (Inches of Mercury)**
- C. Bar**
- D. Pascals**

9. What is the likely cause of excessive pitting and corrosion in your Red Gear?

- A. Fuel contamination**
- B. Water intrusion**
- C. Overheating**
- D. Low lubrication**

10. What type of gas is emitted from a charging battery?

- A. Carbon Dioxide**
- B. Hydrogen Sulfide**
- C. Oxygen**
- D. Nitrogen Dioxide**

Answers

SAMPLE

1. A
2. C
3. B
4. B
5. D
6. B
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Where should printed copies of the ECCM be maintained?

- A. Main Control**
- B. All repair lockers**
- C. Engineering Assist Location**
- D. DCC**

The correct choice for where printed copies of the Emergency Casualty Control Manual (ECCM) should be maintained is the Main Control. This location serves as the central command area for managing emergencies and operational control. Having the ECCM readily available in Main Control ensures that personnel in charge can access critical procedures and guidelines quickly during an emergency situation, thereby facilitating an efficient response. Main Control is often staffed continuously during operations and represents the main hub for decision-making and communication. In contrast, while other locations such as repair lockers and the DCC may have access to operational materials, they are not the primary command centers for emergency situations. Engineering Assist Locations may deal with specific engineering tasks, but they do not serve as the immediate control point for overall casualty response. Therefore, the Main Control is the most strategic place for maintaining the ECCM to ensure it is accessible when it is needed most.

2. When analyzing machinery, which of the following would indicate a problem with corrosion?

- A. Presence of aluminum**
- B. Presence of iron**
- C. Presence of tin**
- D. Presence of magnesium**

The correct answer, which indicates a problem with corrosion, is the presence of tin. Tin is often used as a coating for other metals to prevent corrosion, specifically in the food canning industry. However, if tin is present in areas where it has corroded, it may indicate that the substrate it protects is experiencing corrosion. While aluminum, iron, and magnesium can all corrode, their presence alone does not specifically indicate a corrosion issue. Aluminum typically forms a protective oxide layer that prevents further corrosion, and magnesium, while prone to corrosion, is commonly used in applications where weight is a critical factor. Iron, on the other hand, is well-known for rusting, but its presence in an analysis does not directly signal an issue unless it shows signs of corrosion, such as rust formation. Thus, the detection or inquiry about tin can be a viable indication that corrosion has influenced the materials in machinery.

3. How are filters in a hydraulic system typically rated?

- A. Millimeters
- B. Microns**
- C. Grains
- D. Inches

Filters in a hydraulic system are typically rated in microns, which is a unit of measurement that indicates the size of particles that a filter can capture. This measurement is crucial because hydraulic systems often work with fluid that contains various contaminants, including dirt, metal shavings, and other particulate matter. The micron rating of a filter specifies the maximum particle size that can pass through it, allowing operators to select filters capable of removing particles of specific sizes that could compromise the integrity and performance of the hydraulic system. For instance, a filter rated at 10 microns will effectively capture contaminants larger than this size. This level of detail in filtration helps maintain the system's efficiency and prolongs the life of components by preventing wear and damage caused by these contaminants. The other units listed, like millimeters, grains, and inches, are not standard for describing filter ratings in hydraulic systems. Millimeters can indicate larger dimensions, but they do not provide the specificity needed for particle filtration. Grains are typically used to measure the concentration of substances in fluids, such as hardness in water, and inches, a larger unit of measure, is not relevant to the fine filtration required in hydraulic systems. Thus, the micron rating is the most appropriate and widely accepted standard for filter performance.

4. What is typically the expected percentage of tongue weight relative to GTWR?

- A. 5%
- B. 10%**
- C. 15%
- D. 20%

The expected percentage of tongue weight relative to the Gross Trailer Weight Rating (GTWR) is generally around 10%. This value is considered a standard guideline for ensuring safe towing practices. Proper tongue weight is crucial because it affects the stability and control of the vehicle and trailer. A tongue weight of about 10% ensures that there is enough downward force on the hitch to maintain traction at the tow vehicle's rear wheels while preventing sway or loss of control during travel. Deviating significantly from this guideline can lead to handling issues, where too little tongue weight may cause the trailer to sway and too much can overload the rear suspension and lead to unsafe driving conditions. This is why the 10% figure is a commonly recommended target for maintaining towing safety and performance.

5. Where should the air intake for machinery spaces ideally be located?

- A. Near the engine exhaust
- B. Close to the main deck
- C. Aft of the machinery
- D. At the watch stations**

The optimal location for the air intake for machinery spaces is at the watch stations. This positioning allows for superior access to fresh air, which is essential for maintaining adequate ventilation within the machinery spaces. It ensures that the equipment operates efficiently by providing a continuous supply of clean air needed for combustion processes and cooling. Additionally, placing the air intake near the watch stations can facilitate real-time monitoring of air quality, helping to identify any issues that may arise from environmental changes or machinery malfunctions. Proper intake placement is crucial for minimizing the likelihood of machinery overheating or malfunctioning due to poor air supply. In contrast to this, placing the air intake near the engine exhaust could lead to the intake of exhaust gases, which would negatively impact engine performance and air quality within the machinery space. Being close to the main deck might not provide the necessary air quality and temperature control, while an aft location, depending on the design of the vessel, could also impede airflow and result in inefficient ventilation.

6. Which pressure is generally tested for hydraulic hoses?

- A. Static Pressure
- B. Hydrostatic Test Pressure**
- C. Dynamic Pressure
- D. Absolute Pressure

Hydraulic hoses are primarily tested for hydrostatic test pressure, which is specifically designed to verify the integrity and strength of the hose material under high-pressure conditions. This test involves filling the hose with a fluid, typically water, and applying pressure that exceeds the maximum operating pressure to ensure that the hose can safely handle the required operational pressures without leaking or bursting.

Hydrostatic testing is critical because it simulates the conditions the hose will face in actual use while allowing for the detection of any weaknesses or flaws in the material that may not be visible under normal circumstances. It ensures that the hoses can perform safely under pressure, making it essential in applications where failure could lead to safety risks or operational downtime. The other types of pressure - static, dynamic, and absolute - refer to different conditions and measurements but do not specifically address the testing protocols for hoses. Static pressure is related to the force exerted by a fluid at rest, dynamic pressure involves fluid in motion, and absolute pressure accounts for atmospheric pressure in addition to the measured pressure, but none of these directly reflect the testing protocols meant to validate the strength of hydraulic hoses.

7. Engines shall operate at what percentage of the CG Load when conducting performance tests?

- A. 70-80%
- B. 80-90%**
- C. 90-100%
- D. 50-60%

The correct range of 80-90% of the Continuous Rating (CG Load) during performance tests is designed to ensure that the engines are assessed under conditions that closely mimic operational requirements. Operating in this range allows for a thorough evaluation of the engine's reliability, efficiency, and performance characteristics while minimizing the risk of overstressing the equipment. This testing percentage represents a balance where the engines demonstrate their capabilities under significant but safe loads. By focusing on this range, the performance tests can reveal potential areas for improvement and confirm that the engine can operate effectively under normal conditions encountered during typical usage. Operating below this range, such as in the 50-60% or 70-80% categories, may not provide an accurate representation of engine performance under full operational conditions, while testing at 90-100% could push the engine beyond typical stress levels, potentially rendering test results less reliable or causing damage to the engine. Thus, the 80-90% range serves as the optimum percentage for comprehensive performance assessment during testing.

8. Vacuum gauges indicate readings in which measurement unit?

- A. Atmospheres
- B. Hg (Inches of Mercury)**
- C. Bar
- D. Pascals

Vacuum gauges are primarily designed to measure pressures lower than atmospheric pressure, which is essential in various applications including HVAC systems, scientific experiments, and laboratory processes. The reading in inches of mercury (Hg) is a common unit used in the context of vacuum measurements because it directly relates to how atmospheric pressure is defined and allows easy understanding of how much pressure has been reduced. Inches of mercury describes how high a column of mercury can be raised by the pressure in the vacuum environment. This is particularly useful in industries and fields where understanding the vacuum levels in relation to atmospheric pressure is critical. The use of this unit provides a clear and practical visualization of vacuum conditions, making it a standard measurement in many engineering and scientific applications. While other units such as atmospheres, bars, and pascals can technically be used to express pressure, inches of mercury specifically aligns with the standardized measurements typically used in vacuum gauge readings, which makes it the most relevant choice among the options.

9. What is the likely cause of excessive pitting and corrosion in your Red Gear?

- A. Fuel contamination**
- B. Water intrusion**
- C. Overheating**
- D. Low lubrication**

Excessive pitting and corrosion in gear systems, such as the Red Gear, is often caused by water intrusion. Water can lead to an electrochemical reaction that accelerates both corrosion and pitting on metal surfaces. This is particularly detrimental in gear systems because it reduces the effectiveness of the lubrication and introduces additional wear mechanisms, such as rust. When water enters the gear housing, it can displace the lubricating oil, leading to a situation where metal surfaces are not adequately protected. The lubrication film is essential for preventing direct metal-to-metal contact under load, and without it, surfaces are prone to fatigue and pitting due to both mechanical stress and corrosive action. Therefore, regular checks for seals and moisture ingress are crucial in maintaining the integrity of gearboxes and preventing these forms of damage. While other factors such as fuel contamination, overheating, and low lubrication can cause issues within gear systems, they do not specifically lead to pitting and corrosion as water intrusion does. They may contribute to the overall failure of the system, but the unique role of water in facilitating corrosion makes it the primary concern in this context.

10. What type of gas is emitted from a charging battery?

- A. Carbon Dioxide**
- B. Hydrogen Sulfide**
- C. Oxygen**
- D. Nitrogen Dioxide**

When a battery is being charged, particularly in the case of lead-acid batteries, hydrogen gas is produced as a byproduct of the electrochemical reactions that take place during the charging process. This gas is highly flammable and can be dangerous if it accumulates in an enclosed space. The presence of hydrogen gas is a critical aspect of battery maintenance and operation, which necessitates proper ventilation to prevent explosive situations. The incorrect options involve gases that do not typically result from the charging process of standard rechargeable batteries. For instance, carbon dioxide is more associated with combustion processes and metabolic activities, while oxygen is produced during certain chemical reactions in batteries but is not a significant gas emitted during the charging phase. Nitrogen dioxide is primarily a byproduct of combustion processes and industrial activities and is not emitted by charging batteries. Understanding the specific gases released during battery operations is essential for safety and maintenance in both everyday and industrial contexts.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://mk2swe.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE