

Medical Dosimetry Certification Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which statement is true regarding the testing of brachytherapy sources for leakage?**
 - A. Short half-life sources need not be tested for leakage**
 - B. Sources not in use need not be tested for leakage**
 - C. All sources must be tested regardless of usage**
 - D. Long half-life sources are exempt from testing**
- 2. In a specified medium, which factors influence the dose at a distance from a known AKS point source?**
 - A. Inverse square law and medium attenuation**
 - B. Medium scatter and beam quality**
 - C. Inverse square law and medium scatter**
 - D. Distance from radiation source only**
- 3. What is the dose rate of an implant determined by in the Paris system of dosimetry?**
 - A. Total dose**
 - B. Maximum dose**
 - C. Mean basal dose rate**
 - D. Minimum dose**
- 4. When using Clarkson's method, what can be evaluated at any point in a patient for an irregular field?**
 - A. Only primary dose components**
 - B. Only scatter dose components**
 - C. Both scatter and primary components of dose**
 - D. None of the above**
- 5. For a patient treated with a single field of a 16 MeV electron beam, what is the depth of the 90% isodose line along the central axis?**
 - A. 2 cm**
 - B. 3 cm**
 - C. 4 cm**
 - D. 5 cm**

6. In Compton scattering, the energy of the back-scattered photon is approximately:

- A. 0.125 MeV**
- B. 0.225 MeV**
- C. 0.325 MeV**
- D. 0.425 MeV**

7. To reduce normal tissue complications for a given tumor dose prescription, the NTCP curve must move in which direction?

- A. To the left**
- B. To the right**
- C. Downward**
- D. Upward**

8. An AKS of 10U corresponds to how many cGy cm²/h?

- A. 10 cGy cm²/h**
- B. 5 cGy cm²/h**
- C. 15 cGy cm²/h**
- D. 20 cGy cm²/h**

9. A brachytherapy source is considered leaky if the wipe test indicates an activity exceeding what threshold?

- A. 500 Bq**
- B. 185 Bq**
- C. 10 nCi**
- D. 5 nCi**

10. In relation to the aim of internal shielding in electron beam therapy, what primary outcome should be avoided?

- A. Excessive skin dose**
- B. Under dosing the target area**
- C. Severe patient discomfort**
- D. Increased treatment time**

Answers

SAMPLE

1. A
2. C
3. C
4. C
5. C
6. B
7. B
8. A
9. B
10. A

SAMPLE

Explanations

SAMPLE

1. Which statement is true regarding the testing of brachytherapy sources for leakage?

- A. Short half-life sources need not be tested for leakage**
- B. Sources not in use need not be tested for leakage**
- C. All sources must be tested regardless of usage**
- D. Long half-life sources are exempt from testing**

The information regarding the testing of brachytherapy sources for leakage is based on safety guidelines and regulations concerning radioactive materials. The correct statement indicates that short half-life sources do not require testing for leakage due to their rapid decay, meaning they will not be present long enough to pose a significant radiation hazard through leakage. This allows for a focused approach to safety, as the risk associated with these short-lived isotopes diminishes quickly, and extensive leakage testing would not be practical or necessary. Testing for leakage is critical for long-lived sources that remain in use for extended periods, as they have a greater potential to cause harm if they leak. Thus, the requirement to test all brachytherapy sources, especially those with longer half-lives, is essential for ensuring patient and staff safety. The other statements do not align with established safety protocols and practices, which emphasize the importance of monitoring source safety continuously, particularly for sources that are in continual use or have the potential to remain functional long enough to accumulate a risk of leakage.

2. In a specified medium, which factors influence the dose at a distance from a known AKS point source?

- A. Inverse square law and medium attenuation**
- B. Medium scatter and beam quality**
- C. Inverse square law and medium scatter**
- D. Distance from radiation source only**

The correct answer highlights two critical factors that influence the dose received at a distance from a known AKS (Air Kerma Strength) point source: the inverse square law and medium scatter. The inverse square law states that the intensity of radiation, and thus the dose, decreases with the square of the distance from the source. This principle is significant because it mathematically defines how quickly radiation diminishes as one moves away from the source. For example, doubling the distance results in a reduction of the dose by a factor of four. Medium scatter, on the other hand, refers to the scattering of radiation as it interacts with materials in its path. Scatter can increase the dose received by a point at a distance from the source, as some radiation changes direction and continues outward rather than being absorbed. This is particularly important in complex media such as tissue or other materials, where multiple interactions can lead to an increase in the dose delivered at certain distances. Combining these two factors provides a comprehensive understanding of how radiation dose varies with distance and the properties of the medium through which it travels. The intricate interplay between the decrease from the inverse square law and the potential increase from scatter is essential for accurate dose calculations in medical dosimetry.

3. What is the dose rate of an implant determined by in the Paris system of dosimetry?

- A. Total dose**
- B. Maximum dose**
- C. Mean basal dose rate**
- D. Minimum dose**

In the Paris system of dosimetry, the dose rate of an implant is determined by the mean basal dose rate. This approach considers the distribution of the dose delivered by the radioactive source and averages it over the target volume. The mean basal dose rate reflects both the strength of the isotope used and its geometrical distribution, allowing for comprehensive assessment of the radiation exposure to the surrounding tissue. This value is essential in ensuring that the prescribed dose is effectively delivered while minimizing damage to healthy tissues. By focusing on the mean basal dose rate, dosimetrists can create treatment plans that optimize therapeutic outcomes for patients undergoing brachytherapy, ensuring a balance between efficacy in tumor control and the safety of surrounding healthy tissues. This systematic determination of dose rate is crucial for achieving the desired clinical goals in the radiation treatment process.

4. When using Clarkson's method, what can be evaluated at any point in a patient for an irregular field?

- A. Only primary dose components**
- B. Only scatter dose components**
- C. Both scatter and primary components of dose**
- D. None of the above**

Clarkson's method is a well-established technique used in radiation therapy to estimate the dose distribution within irregularly shaped treatment fields. This method takes into account both primary and scatter dose components, which is essential for accurate dose calculations in such non-uniform geometries. When evaluating the dose at any point within a patient, the primary dose component refers to the radiation directly delivered from the radiation source to the treatment area, whereas the scatter dose component arises from the interaction of primary photons with surrounding tissues and materials, which results in secondary photons being emitted from these interactions. Clarkson's method allows the integration of both of these dose components by using a technique called the "scatter factor," which adjusts the primary dose to include contributions from scattered radiation. The ability to evaluate both components is crucial, especially for irregular fields where there may be considerable variation in the geometry and density of tissues. This comprehensive approach enables medical dosimetrists to calculate a more accurate and clinically relevant dose distribution, ensuring that the prescribed dose is delivered effectively to the target volume while minimizing exposure to surrounding healthy tissues. Hence, the correct answer reflects the method's capability to accommodate the complexities of patient anatomy and treatment planning.

5. For a patient treated with a single field of a 16 MeV electron beam, what is the depth of the 90% isodose line along the central axis?

- A. 2 cm**
- B. 3 cm**
- C. 4 cm**
- D. 5 cm**

The depth of the 90% isodose line for electron beams is significantly influenced by both the energy of the beam and the characteristics of the tissue it penetrates. For a 16 MeV electron beam, the penetration capability is quite substantial compared to lower energy beams. Typically, the depth of the 90% isodose line for a specific energy can be approximated using clinical data or established dose distribution characteristics.

Generally, higher energy electron beams, like the 16 MeV, have a 90% isodose line that falls at a depth ranging from approximately 3 cm to 5 cm in tissue. For this energy level, empirical data and clinical practices suggest that the depth of the 90% isodose line is around 4 cm. Understanding that the 90% isodose line represents the depth at which 90% of the prescribed dose is delivered is critical for proper treatment planning. Since the 16 MeV beam is used to target tumors that may be located at a moderate depth beneath the surface, recognizing this specific depth helps ensure that the treatment is both effective and minimizes exposure to surrounding healthy tissue. Therefore, the depth of the 90% isodose line being identified at

6. In Compton scattering, the energy of the back-scattered photon is approximately:

- A. 0.125 MeV**
- B. 0.225 MeV**
- C. 0.325 MeV**
- D. 0.425 MeV**

In Compton scattering, the energy of the back-scattered photon can be estimated using the relationship between the energy of the incident photon, the scattering angle, and the properties of the electron it interacts with. When a photon collides with an electron and is back-scattered (scattered at an angle of 180 degrees), it loses a significant amount of energy. The energy of the back-scattered photon is determined through the Compton formula, which calculates the energy lost by the photon when it interacts with the electron. At a back-scattering angle, the energy of the scattered photon can be estimated to be roughly 0.225 MeV, which corresponds to the correct answer. This value of approximately 0.225 MeV for the back-scattered photon reflects the balance between the initial energy of the photon and the energy transferred to the electron during the scattering event. Overall, understanding how this relationship works is crucial for medical dosimetry professionals, as it aids in calculating dosages and understanding radiation interactions in tissues.

7. To reduce normal tissue complications for a given tumor dose prescription, the NTCP curve must move in which direction?

- A. To the left**
- B. To the right**
- C. Downward**
- D. Upward**

To reduce normal tissue complications associated with a specified tumor dose prescription, the Normal Tissue Complication Probability (NTCP) curve must shift to the right. This is because a rightward shift indicates that a higher dose of radiation to normal tissues is required to reach the same probability of complications compared to the original dose. In essence, this means that the normal tissues can tolerate higher doses before complications occur, which allows for a more significant dose to be prescribed to the tumor while minimizing the risk to surrounding healthy tissue. A shift to the right effectively provides a buffer against the adverse effects, enabling better treatment planning and patient outcomes. Other directions, such as downward or upward movements of the NTCP curve, do not adequately represent an increase in the tissues' tolerance to radiation. A downward shift would suggest that tissues are becoming more sensitive to radiation, thereby increasing complications for the same dose, while an upward shift does not reflect the desired change in dose tolerance. The focus of effective treatment planning in radiation therapy is to maximize tumor control while protecting normal tissue, making the rightward movement of the NTCP curve the ideal goal.

8. An AKS of 10U corresponds to how many cGy cm²/h?

- A. 10 cGy cm²/h**
- B. 5 cGy cm²/h**
- C. 15 cGy cm²/h**
- D. 20 cGy cm²/h**

An Air Kerma Strength (AKS) of 10U is defined as having a specific conversion factor that directly relates it to dose rate in terms of cGy cm²/h. The conversion from AKS to cGy cm²/h is a standardized calculation that allows practitioners in the field of medical dosimetry to assess the radiation output from sources used in treatment planning. In the context of this question, an AKS of 10U specifically translates to a dose rate of 10 cGy cm²/h. This relationship is critical in treatment planning for brachytherapy and other radiation therapies where precise dosimetry is essential to ensure that the intended dose is delivered to the target tissue while minimizing exposure to surrounding healthy tissues. Utilizing the given units properly, an AKS of 10U indicates the strength of the source, and when directly converted, it results in 10 cGy cm²/h. This conversion is based on established protocols within medical dosimetry, which ensures consistency and accuracy in patient care.

9. A brachytherapy source is considered leaky if the wipe test indicates an activity exceeding what threshold?

- A. 500 Bq**
- B. 185 Bq**
- C. 10 nCi**
- D. 5 nCi**

A brachytherapy source is determined to be leaky based on the results of a wipe test that indicates a specific level of radioactivity. The threshold for considering a source leaky is set at 185 Bq. If the wipe test reveals contamination above this level, it suggests that the radioactive material is not securely confined within the source, which poses a potential risk for radiation exposure to patients, staff, and the environment. Being familiar with radioactive contamination limits is essential in ensuring safety protocols are followed. The 185 Bq threshold is particularly relevant as it aligns with regulatory standards that help maintain the safety of patients undergoing brachytherapy, as well as healthcare professionals who administer these treatments. When wipe tests exceed this limit, it triggers a series of responses including further investigation, potential source replacement, and enhanced surveillance of the area to mitigate contamination risks.

10. In relation to the aim of internal shielding in electron beam therapy, what primary outcome should be avoided?

- A. Excessive skin dose**
- B. Under dosing the target area**
- C. Severe patient discomfort**
- D. Increased treatment time**

In electron beam therapy, internal shielding serves to protect the skin and underlying tissues from unnecessary radiation while delivering an effective dose to the target area. The primary aim is to ensure that while the radiation is focused on the tumor or target area, there is minimal impact on the surrounding healthy tissues, particularly the skin, which is often the first tissue encountered by the electron beam. Excessive skin dose should be avoided because high doses of radiation to the skin can lead to acute and chronic skin reactions, such as dermatitis, ulceration, and fibrosis. These conditions can cause significant morbidity and may affect the patient's quality of life. By effectively utilizing internal shielding, dosimetrists can ensure that the skin receives a dose that is within safe limits while still allowing the prescribed dose to be delivered to the tumor. This balance is crucial for maximizing treatment efficacy while minimizing adverse effects. While under dosing the target area, severe patient discomfort, and increased treatment time are also important considerations in treatment planning, they are secondary to the critical need to avoid excessive skin dose, as skin toxicity can severely compromise the safety and tolerability of radiation therapy.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://meddosimetry.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE