Medical Device Reprocessing Association of Ontario (MDRAO) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

1. How should the humidity levels be maintained in decontamination areas?

- A. Below 20%
- **B. Between 30-60%**
- **C. Above 60%**
- D. Exactly 50%

2. What does the acronym PIDAC stand for?

- A. Professional Infectious Disease Association of Canada
- **B. Provincial Infectious Diseases Advisory Committee**
- C. Public Infection Disease Assessment Coalition
- **D. Precautionary Infection Disease Action Committee**

3. How are most single-use medical devices typically sterilized?

- A. By autoclaving
- B. By chemical disinfection
- C. By gamma irradiation
- D. By steam sterilization

4. What does HLD stand for in the context of medical device reprocessing?

- A. High-level disinfection
- B. High-level decay
- C. Hazard level determination
- D. High-level dilution

5. Which of the following is true about Tier 2 sterile storage areas?

- A. They only store sterile inventory
- B. They store both clean and sterile inventory
- C. They are used exclusively for single-use items
- D. They are located outside the healthcare setting

- 6. What is the common method for removing scaling in medical devices?
 - A. Using a scrub brush
 - B. Using water and soap
 - C. Using an acid detergent or descaler
 - D. Using plain water
- 7. What is the recommended cleaning frequency for open shelving and bins in sterile storage?
 - A. Every 6 months
 - **B.** Monthly
 - C. Weekly
 - **D.** Annually
- 8. What is the correct temperature, pressure, and duration for most sterilization cycles in a pre-vacuum sterilizer?
 - A. 121 Celsius, 15 psi, for 10 minutes
 - B. 132 Celsius, 27 psi, for 4 minutes
 - C. 135 Celsius, 25 psi, for 5 minutes
 - D. 128 Celsius, 30 psi, for 6 minutes
- 9. What is the most important part of a transport cart?
 - A. The frame
 - B. The casters
 - C. The surface area
 - D. The handles
- 10. How often must waste and recycling containers be emptied and cleaned?
 - A. Emptied weekly and cleaned monthly
 - B. Emptied daily and cleaned weekly
 - C. Emptied daily and cleaned monthly
 - D. Emptied monthly and cleaned weekly

Answers

- 1. B 2. B 3. C 4. A 5. B 6. C 7. B 8. B 9. B 10. C

Explanations

1. How should the humidity levels be maintained in decontamination areas?

- A. Below 20%
- **B. Between 30-60%**
- **C. Above 60%**
- D. Exactly 50%

Maintaining humidity levels in the decontamination areas between 30-60% is crucial for several reasons. This range helps to balance moisture in the environment, preventing the growth of mold and bacteria, which can thrive in overly humid conditions. Additionally, a humidity level that is too low can lead to static electricity, which poses a risk when handling delicate instruments. Furthermore, the specified humidity range promotes effective cleaning and drying processes for medical instruments. It facilitates the removal of contaminants while ensuring that the instruments do not become damaged or corroded during the reprocessing stage. This precision in humidity control is particularly vital in maintaining compliance with health and safety regulations, which stipulate optimal conditions in decontamination areas to ensure the safety and effectiveness of medical devices.

2. What does the acronym PIDAC stand for?

- A. Professional Infectious Disease Association of Canada
- **B. Provincial Infectious Diseases Advisory Committee**
- C. Public Infection Disease Assessment Coalition
- **D. Precautionary Infection Disease Action Committee**

The acronym PIDAC stands for the Provincial Infectious Diseases Advisory Committee. This committee plays a crucial role in providing guidance and recommendations on the prevention and control of infectious diseases at a provincial level in Canada. PIDAC focuses on the development of evidence-based guidelines, tools, and best practices to manage infection prevention and control within healthcare settings, making it an essential resource for healthcare professionals and institutions aiming to enhance patient safety and effectiveness in infection control measures. The other options, while they may sound plausible, do not accurately reflect the established role of PIDAC within the context of infectious disease management in Ontario. The specificity and accuracy of the term are significant, particularly in the context of protocols and guidelines relied upon by medical professionals in various settings.

3. How are most single-use medical devices typically sterilized?

- A. By autoclaving
- B. By chemical disinfection
- C. By gamma irradiation
- D. By steam sterilization

Most single-use medical devices typically undergo sterilization through gamma irradiation. This method is particularly effective for materials that are sensitive to heat, moisture, or pressure, making it an optimal choice for a wide range of plastic devices that cannot withstand traditional sterilization methods like steam. Gamma irradiation uses high-energy gamma rays to penetrate the product and kill microbial life, ensuring that the devices are sterile and safe for use in medical settings. Gamma irradiation is a preferred sterilization method for single-use devices as it does not require high temperatures or prolonged exposure times, which can compromise the integrity of certain materials. This sterilization method is also effective in eliminating a broad spectrum of pathogens, achieving sterility assurance levels that meet regulatory requirements. In contrast, other sterilization methods such as autoclaving or steam sterilization involve high heat and pressure, which could potentially damage or degrade some single-use devices. Chemical disinfection is typically not suitable for achieving the level of sterility required for devices intended for invasive procedures. Therefore, gamma irradiation is often the best method for sterilizing single-use medical devices while ensuring their functionality and safety upon usage.

4. What does HLD stand for in the context of medical device reprocessing?

- A. High-level disinfection
- B. High-level decay
- C. Hazard level determination
- D. High-level dilution

High-level disinfection (HLD) is an essential process within the realm of medical device reprocessing. It refers to a rigorous method used to eliminate all microorganisms, except large numbers of bacterial spores, from medical devices that come into contact with mucous membranes or sterile body tissues. HLD is critical for ensuring patient safety, particularly when devices cannot undergo sterilization due to material constraints or the nature of their use. Understanding the distinction between disinfection levels is important, as devices categorized for HLD ensure a high standard of cleanliness and safety. This term is widely recognized and utilized in healthcare settings to establish protocols for reprocessing instruments, ensuring compliance with health regulations. In contrast, the other options, such as high-level decay, hazard level determination, and high-level dilution do not pertain to established terminology or practices in the context of medical device reprocessing. They either refer to concepts from different domains or do not address the reprocessing standards necessary for maintaining the integrity and safety of medical devices. Thus, high-level disinfection stands out as the correct term in this context.

5. Which of the following is true about Tier 2 sterile storage areas?

- A. They only store sterile inventory
- B. They store both clean and sterile inventory
- C. They are used exclusively for single-use items
- D. They are located outside the healthcare setting

Tier 2 sterile storage areas are designed to accommodate both clean and sterile inventory, which is essential for effective medical device reprocessing. These areas help ensure that items remain uncontaminated while being readily accessible when needed for procedures. When they store both types of inventory, it allows healthcare facilities to optimize space and maintain an efficient workflow. By having both clean and sterile items together, staff can easily manage inventory and minimize the chances of contamination that could occur with frequent handling or transport of items. It's essential to distinguish this from storage areas that are exclusively for sterile inventory or single-use items, as that would limit the functionality of the space and potentially lead to inefficiencies in inventory management. Additionally, being located outside the healthcare setting does not align with the purpose of Tier 2 storage, which should be readily accessible to healthcare personnel while maintaining necessary infection control protocols.

6. What is the common method for removing scaling in medical devices?

- A. Using a scrub brush
- B. Using water and soap
- C. Using an acid detergent or descaler
- D. Using plain water

The common method for removing scaling in medical devices is using an acid detergent or descaler. Scaling occurs due to mineral deposits, particularly from hard water, which can build up on instruments and surfaces over time. Acidic descalers effectively dissolve these mineral deposits, making them essential for maintaining the integrity and functionality of medical devices. Acid detergents work by chemically reacting with the calcium and magnesium deposits, breaking them down into soluble compounds that can be easily rinsed away. This is crucial in settings like healthcare, where the cleanliness and proper functioning of instruments are vital for patient safety and effective treatment. Other methods such as using a scrub brush, water and soap, or plain water alone are generally insufficient for addressing scaling issues. Scrubbing may help with surface debris but does not effectively eliminate the mineral buildup itself. Water and soap may clean organic matter but lack the chemical properties needed to tackle mineral deposits. Similarly, plain water will not break down scaling at all, so it is not recommended for this purpose. Thus, using an acid detergent or descaler is the preferred approach to ensure thorough cleaning and maintenance of medical devices.

- 7. What is the recommended cleaning frequency for open shelving and bins in sterile storage?
 - A. Every 6 months
 - **B. Monthly**
 - C. Weekly
 - D. Annually

The recommended cleaning frequency for open shelving and bins in sterile storage is monthly. This frequency is essential to maintain a clean environment that minimizes contamination risks. Regular cleaning helps to remove dust, debris, and any potential microbial growth that could compromise the sterility of stored medical devices. By conducting monthly cleaning, facilities can ensure that the surfaces are consistently kept hygienic, which is critical in settings where sterility is paramount. This practice aligns with infection control protocols and the standards set by regulatory bodies. It also allows for the timely identification of any issues, such as physical damage to storage units or pest infestations, which could jeopardize the integrity of the sterile storage area. Cleaning less frequently, such as every six months, annually, or even weekly, may not adequately prevent the buildup of contaminants and does not effectively support the stringent requirements of sterile storage.

- 8. What is the correct temperature, pressure, and duration for most sterilization cycles in a pre-vacuum sterilizer?
 - A. 121 Celsius, 15 psi, for 10 minutes
 - B. 132 Celsius, 27 psi, for 4 minutes
 - C. 135 Celsius, 25 psi, for 5 minutes
 - D. 128 Celsius, 30 psi, for 6 minutes

For most sterilization cycles in a pre-vacuum sterilizer, the correct parameters are typically 132 degrees Celsius, at approximately 27 psi, for a duration of 4 minutes. This standard is used for sterilizing heat and moisture-stable medical devices and is effective in achieving sterilization by ensuring that the steam penetrates the materials and eliminates bacterial spores. The combination of temperature and pressure is crucial, as higher temperatures allow for shorter exposure times, making the sterilization process more efficient. The pre-vacuum sterilizer operates by first removing air from the chamber, which is critical for effective steam sterilization. The specific time of 4 minutes at this temperature and pressure ensures that all items being sterilized reach the necessary temperature throughout their entirety, providing a high level of safety against microbial contamination. This answer reflects best practices and standards established in sterilization protocols for the healthcare setting, which are aligned with guidelines from various health and safety organizations. Understanding these parameters helps in the effective and safe reprocessing of medical devices, ultimately contributing to patient safety.

9. What is the most important part of a transport cart?

- A. The frame
- B. The casters
- C. The surface area
- D. The handles

The most important part of a transport cart is the casters. Casters are crucial because they allow for the mobility and maneuverability of the cart, which is essential in a medical environment where equipment needs to be moved efficiently and safely. The quality and design of the casters can significantly affect how easily the cart can be moved, particularly in tight spaces, over various floor surfaces, and when the cart is loaded with heavy equipment or supplies. Effective casters minimize the risk of accidents, such as tipping or jamming, and contribute to the overall stability of the transport cart during movement. This aspect is vital in healthcare settings, where quick and efficient transport of medical devices and instruments can impact patient care and workflow. The ability to push or pull a loaded cart with minimal effort reduces physical strain on staff and enhances operational efficiency. While the frame, surface area, and handles have important functions, they do not play as critical a role in the overall effectiveness of the cart's mobility, which is why the casters are the most important component.

10. How often must waste and recycling containers be emptied and cleaned?

- A. Emptied weekly and cleaned monthly
- B. Emptied daily and cleaned weekly
- C. Emptied daily and cleaned monthly
- D. Emptied monthly and cleaned weekly

The correct answer specifies that waste and recycling containers must be emptied daily and cleaned monthly, which aligns with best practices in maintaining hygiene and preventing contamination in healthcare settings. Frequent emptying of these containers is essential to minimize the risk of overflow and to reduce odors, pests, and potential exposure to hazardous materials. Cleaning on a monthly basis helps to ensure that any residual waste does not become a source of contamination or infection. Regular cleaning is crucial to maintaining a safe environment, particularly in healthcare facilities where the presence of pathogens can lead to health risks for both patients and staff. In contrast, suggestions for less frequent emptying or cleaning may lead to unsanitary conditions, potentially compromising infection control protocols. Regularly managing waste and recycling containers contributes to overall health and safety standards within a facility.