

MCAT Chemical and Physical Foundations of Biological Systems Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What describes aprotic solvents?

- A. They contain a high density of protons**
- B. They have protons bonded to electrophilic atoms**
- C. They lack protons that are directly connected to electrophilic atoms**
- D. They exclusively dissolve ionic compounds**

2. How much does the prefix 'micro' correspond to in powers of ten?

- A. -3**
- B. -6**
- C. -9**
- D. +6**

3. What is the root for a carbon chain containing one carbon atom?

- A. Eth-**
- B. Meth-**
- C. Prop-**
- D. But-**

4. When treated with alcohol and anhydrous acid, aldehydes and ketones form which of the following pairs?

- A. Hemiketals and Acetals**
- B. Hemiacetals and Ketals**
- C. Cyanohydrins and Imine**
- D. Carboxylic Acids and Alcohols**

5. What equation defines the index of refraction (n) in the context of Snell's Law?

- A. $n = v/c$**
- B. $n = c/v$**
- C. $n = \sin\theta_1/\sin\theta_2$**
- D. $n = \theta_1/\theta_2$**

6. MCPBA and MMPP are utilized with which type of acids to create epoxides?

- A. Buffered acids
- B. Carboxylic acids
- C. Peroxyacids
- D. Aromatic acids

7. What is the order of nucleophilicity increase in protic solvents?

- A. Up the periodic table
- B. Down the periodic table
- C. Across the periodic table
- D. No specific order

8. In relation to R_f values, what does a higher R_f value indicate about polarity?

- A. Higher polarity
- B. Lower polarity
- C. No correlation
- D. Increased reactivity

9. In which conformation are conformational isomers most favorable when staggered?

- A. Gauche
- B. Anti-conformation
- C. Eclipsed
- D. Chair

10. How many electrons can the f subshell hold at maximum?

- A. 10
- B. 12
- C. 14
- D. 16

Answers

SAMPLE

1. C
2. B
3. B
4. A
5. B
6. C
7. B
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What describes aprotic solvents?

- A. They contain a high density of protons
- B. They have protons bonded to electrophilic atoms
- C. They lack protons that are directly connected to electrophilic atoms**
- D. They exclusively dissolve ionic compounds

Aprotic solvents are characterized by the absence of protons that are directly connected to electrophilic atoms, such as oxygen or nitrogen. This characteristic plays a significant role in the behavior of aprotic solvents in chemical reactions and environments. Because they do not donate protons readily, aprotic solvents can effectively stabilize ions without engaging in hydrogen bonding, which often allows for enhanced solvation of cations and anions. In contrast, protic solvents, which do contain OH or NH groups, can participate in hydrogen bonding, thus affecting their interactions with solutes. This distinction is crucial when considering reaction mechanisms in organic chemistry, especially in nucleophilic substitutions and other reactions where the solvent's properties influence reactant interactions. The other descriptions do not accurately define aprotic solvents, as they imply the presence of protons bonded to electrophilic atoms or make claims about their solvent capabilities with ionic compounds that do not highlight the key feature of lacking specific types of protons. This fundamental understanding of the properties of solvents is essential for interpreting their roles in chemical reactions and influencing the behavior of reactants.

2. How much does the prefix 'micro' correspond to in powers of ten?

- A. -3
- B. -6**
- C. -9
- D. +6

The prefix 'micro' corresponds to a factor of (10^{-6}) in the metric system. This means that when a unit is prefixed with 'micro', it indicates that the unit is one-millionth of the base unit. For instance, a micrometer is one-millionth of a meter, and a microgram is one-millionth of a gram. Understanding the metric prefixes is crucial in fields such as chemistry and biology, as it allows for accurate and precise measurements across different scales. Each metric prefix has a specific power of ten associated with it, and 'micro' being (10^{-6}) is well-established in scientific literature. Thus, the correspondence of 'micro' to (10^{-6}) directly validates the answer given.

3. What is the root for a carbon chain containing one carbon atom?

- A. Eth-**
- B. Meth-**
- C. Prop-**
- D. But-**

The correct root for a carbon chain containing one carbon atom is "Meth-." In organic chemistry, the naming of hydrocarbons follows a systematic approach where the prefixes indicate the number of carbon atoms present in the longest continuous chain. In this nomenclature system, "Meth-" specifically refers to a single carbon atom, which corresponds to methane (CH_4), the simplest alkane. The other prefixes represent longer carbon chains: "Eth-" refers to a two-carbon chain (ethane), "Prop-" refers to a three-carbon chain (propane), and "But-" refers to a four-carbon chain (butane). Understanding these prefixes is essential for recognizing and identifying different hydrocarbons and their structures, which is a fundamental concept in organic chemistry.

4. When treated with alcohol and anhydrous acid, aldehydes and ketones form which of the following pairs?

- A. Hemiketals and Acetals**
- B. Hemiacetals and Ketals**
- C. Cyanohydrins and Imine**
- D. Carboxylic Acids and Alcohols**

When aldehydes and ketones are treated with alcohols in the presence of an anhydrous acid catalyst, they undergo a transformation that results in the formation of acetals and hemiketals. The interaction begins with the alcohol acting as a nucleophile, attacking the carbonyl carbon of the aldehyde or ketone, leading to the formation of a hemiacetal or hemiketal, depending on whether the starting carbonyl compound is an aldehyde or a ketone, respectively. In the case of aldehydes, the product formed is a hemiacetal, which contains one ether (-OR) and one hydroxyl group (-OH) on the same carbon atom. If further treated with another equivalent of alcohol, the hemiacetal can be converted into an acetal, which has two ether groups attached to the same carbon. For ketones, the initial addition results in a hemiketal, characterized by one ether and one hydroxyl group. It can similarly undergo further reaction with another alcohol molecule to yield a ketal, which has two ether groups on the same carbon. Hence, the pairing of hemiketals with acetals reflects the conversion pathways for ketones and aldehydes when alcohols are used, confirming the

5. What equation defines the index of refraction (n) in the context of Snell's Law?

- A. $n = v/c$
- B. $n = c/v$**
- C. $n = \sin\theta_1/\sin\theta_2$
- D. $n = \theta_1/\theta_2$

The index of refraction (n) is defined as the ratio of the speed of light in a vacuum (c) to the speed of light in a given medium (v). This relationship can be expressed by the equation $n = c/v$. In the context of light passing from one medium to another, Snell's Law relates the angles of incidence and refraction to the indices of refraction of the two media. However, the fundamental definition of index of refraction originates from the speeds of light in different mediums. Therefore, the correct equation directly linking the index of refraction to the speed of light is indeed $n = c/v$, where a higher index corresponds to a slower speed of light in that medium compared to vacuum. This formula highlights how light interacts with various materials, affecting both speed and direction as it passes through different substances. Through this understanding, one can grasp how the index of refraction is critical for predicting the behavior of light as it travels through different environments.

6. MCPBA and MMPP are utilized with which type of acids to create epoxides?

- A. Buffered acids
- B. Carboxylic acids
- C. Peroxyacids**
- D. Aromatic acids

MCPBA (m-Chloroperbenzoic acid) and MMPP (m-Methylmorpholine N-oxide) are both well-known peroxyacids, which are organic compounds containing a peroxy functional group. They are particularly effective for the epoxidation of alkenes, a reaction that involves the formation of an epoxide, a three-membered cyclic ether. When these peroxyacids react with alkenes, they will insert an oxygen atom into the carbon-carbon double bond, thus forming an epoxide. The choice of using peroxyacids such as MCPBA is critical because their structure allows them to act as strong electrophiles, facilitating the formation of the epoxide under mild conditions. Other types of acids, such as carboxylic acids or aromatic acids, do not have the requisite structure to perform this specific function. Buffered acids typically serve to maintain pH stability rather than participate directly in the epoxidation reaction. Therefore, peroxyacids are the appropriate agent for creating epoxides in these reactions.

7. What is the order of nucleophilicity increase in protic solvents?

- A. Up the periodic table**
- B. Down the periodic table**
- C. Across the periodic table**
- D. No specific order**

In protic solvents, nucleophilicity increases down the periodic table. This trend can be explained by considering how nucleophiles interact with the solvent. In protic solvents, nucleophiles are often stabilized by hydrogen bonding with solvent molecules. As you move down a group in the periodic table, atoms generally become larger, which means that the nucleophiles' ability to donate electrons and participate in nucleophilic attacks increases due to a decrease in the electronegativity of the atoms involved. A larger atom can better accommodate negative charge and is generally less solvated, which enhances its nucleophilicity. For instance, consider the halide ions: fluoride is a small ion that is heavily solvated because it can form strong hydrogen bonds with protic solvents, making it a poor nucleophile in these conditions. On the contrary, iodide is larger, experiences less solvation, and is therefore a stronger nucleophile in protic solvents. In summary, the trend of increasing nucleophilicity down the periodic table in protic solvents is due to the balance between atomic size, charge density, and solvation effects.

8. In relation to R_f values, what does a higher R_f value indicate about polarity?

- A. Higher polarity**
- B. Lower polarity**
- C. No correlation**
- D. Increased reactivity**

A higher R_f (retention factor) value in chromatography indicates lower polarity of a substance relative to the mobile phase used in the process. The R_f value is calculated as the distance traveled by the compound divided by the distance traveled by the solvent front. When substances are separated using a chromatographic technique, non-polar compounds will travel further up the stationary phase compared to polar compounds, which tend to interact more strongly with the stationary phase and therefore travel less distance. In a typical chromatography setup, the stationary phase is often polar (like silica gel), and the mobile phase can vary in polarity (for example, a non-polar solvent). If a compound has a high R_f value, it means that it has a weaker interaction with the polar stationary phase and, thus, is comparatively less polar. This is a fundamental principle in chromatography where substances' affinities for the stationary or mobile phase reflect their polarity. Therefore, a higher R_f value corresponds to lower polarity, which is why it is labeled as the correct interpretation of R_f values in this context.

9. In which conformation are conformational isomers most favorable when staggered?

- A. Gauche**
- B. Anti-conformation**
- C. Eclipsed**
- D. Chair**

Conformational isomers, also known as rotamers, refer to the different spatial arrangements of a molecule that can be obtained by rotation around a single bond. In the context of staggered conformations, the most favorable configuration is one that minimizes steric hindrance and torsional strain. Among the staggered conformations, the anti-conformation is particularly stable. In the anti-conformation, substituents on adjacent carbons are positioned opposite each other, allowing for maximum distance between bulky groups. This arrangement minimizes interactions that can lead to increased energy due to steric strain, making the anti-conformation lower in energy compared to other staggered arrangements. In contrast, the gauche conformation, although staggered, typically places larger substituents closer together, leading to increased steric hindrance compared to the anti-conformation. Therefore, while they are both staggered, the anti conformation is more energetically favorable than the gauche conformation. The eclipsed conformations, although they can briefly occur as molecules rotate around a bond, are higher in energy because the electron clouds of neighboring substituents repel each other, creating torsional strain. Therefore, they are not favored. The chair conformation is often discussed in the context of

10. How many electrons can the f subshell hold at maximum?

- A. 10**
- B. 12**
- C. 14**
- D. 16**

The f subshell can hold a maximum of 14 electrons. This is based on its shape and the quantum numbers associated with f orbitals. Each f subshell consists of seven distinct orbitals. According to quantum mechanics, each orbital can accommodate a maximum of two electrons with opposite spins due to the Pauli exclusion principle. Therefore, if you multiply the seven orbitals by the two electrons per orbital, you arrive at a total of 14 electrons that the f subshell can hold. Understanding this capacity is crucial in fields such as chemistry and quantum mechanics, as it informs how elements fill their electron shells and how they behave chemically. The f subshell is particularly relevant for the lanthanide and actinide series in the periodic table, which are characterized by their filling of f orbitals.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://mcat-chemphysicalfoundationsofbiosystems.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE