

Mathnasium Job Assessment Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

1. What is the product of 7 and 6?

- A. 42
- B. 36
- C. 48
- D. 54

2. What is the GCF of two numbers?

- A. The smallest number that divides both numbers
- B. The greatest factor that divides both numbers
- C. The sum of the two numbers
- D. The product of the two numbers

3. What is the formula for the circumference of a circle?

- A. Circumference = πr^2
- B. Circumference = $2\pi r$
- C. Circumference = πd
- D. Circumference = $r/2$

4. What is the value of the expression: $8 - (3 + 2)$?

- A. 1
- B. 3
- C. 5
- D. 0

5. What is the value of the expression 5^2 ?

- A. 10
- B. 25
- C. 20
- D. 15

6. In geometry, how many degrees are in a right angle?

- A. 45
- B. 90
- C. 180
- D. 360

7. What is the greatest common factor (GCF) of 8 and 12?

- A. 2
- B. 4
- C. 6
- D. 8

8. What is the probability of selecting a red marble from a bag containing 3 red, 2 blue, and 5 green marbles?

- A. $1/2$
- B. $1/3$
- C. $3/10$
- D. $1/4$

9. Which method is primarily used to calculate the area of a circle?

- A. Length x Width
- B. Pi x Radius squared
- C. Base x Height
- D. Perimeter x Height

10. How do you calculate the degrees of a polygon?

- A. Angle degree = $90(n-2)$
- B. Angle degree = $360(n-2)$
- C. Angle degree = $180(n-2)$
- D. Angle degree = $180n$

Answers

SAMPLE

1. A
2. B
3. B
4. B
5. B
6. B
7. B
8. C
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What is the product of 7 and 6?

- A. 42**
- B. 36**
- C. 48**
- D. 54**

The product of 7 and 6 can be calculated by multiplying the two numbers together. When you multiply 7 by 6, you are essentially adding 7 to itself six times: $7 + 7 + 7 + 7 + 7 + 7 = 42$. This shows that 7 multiplied by 6 gives you 42, which is the correct and accurate answer. In terms of multiplication, another way to visualize this is through an array of 7 rows with 6 columns, which also totals 42 individual units. This confirmation through multiple methods solidifies that the correct answer is indeed 42.

2. What is the GCF of two numbers?

- A. The smallest number that divides both numbers**
- B. The greatest factor that divides both numbers**
- C. The sum of the two numbers**
- D. The product of the two numbers**

The greatest common factor (GCF) of two numbers is defined as the largest positive integer that divides both numbers without leaving a remainder. Therefore, when considering the options, the choice that accurately describes this concept is one that refers to the greatest factor that divides both numbers. This means it focuses on the commonality shared between the factors of the two numbers and identifies the largest of those shared factors. By this definition, the GCF is not concerned with the smallest number that divides both (which can lead to confusion, as smaller factors might also divide the numbers), nor does it pertain to the sum or product of the two numbers, which are entirely different mathematical concepts unrelated to common factors. Thus, the correct characterization emphasizes the largest common divisor rather than a simplistic view of divisibility or summation.

3. What is the formula for the circumference of a circle?

- A. Circumference = πr^2**
- B. Circumference = $2\pi r$**
- C. Circumference = πd**
- D. Circumference = $r/2$**

The formula for the circumference of a circle is represented accurately by the expression $2\pi r$, where r stands for the radius of the circle. This equation indicates that the circumference is directly proportional to the radius; as the radius increases, the circumference also increases. The constant π (pi), approximately equal to 3.14159, serves as the scaling factor that relates the radius of the circle to its circumference, demonstrating the essential geometric relationship between these dimensions.

Additionally, another common formulation for the circumference is πd , where d represents the diameter of the circle. Since the diameter is twice the radius ($d = 2r$), both formulas describe the same relationship. However, the prominence of the expression that includes the radius in this context emphasizes the fundamental nature of the radius in defining circular geometry. Overall, the correct choice captures the essential relationship needed to calculate the circumference of a circle, making it a fundamental formula in geometry.

4. What is the value of the expression: $8 - (3 + 2)$?

- A. 1
- B. 3**
- C. 5
- D. 0

To find the value of the expression $8 - (3 + 2)$, it is important to follow the order of operations. This means you should first evaluate the expression inside the parentheses before performing the subtraction. First, calculate the sum within the parentheses: $3 + 2$ equals 5. Once you have that value, the expression simplifies to: $8 - 5$. Now, perform the subtraction: $8 - 5$ equals 3. Therefore, the correct value of the expression is 3, which corresponds to the choice given. This step-by-step simplification helps clarify how the value arrives from the initial expression.

5. What is the value of the expression 5^2 ?

- A. 10
- B. 25**
- C. 20
- D. 15

To find the value of the expression (5^2) , you need to understand what exponentiation means. The notation (5^2) indicates that the base number, which is 5, is multiplied by itself a certain number of times indicated by the exponent, which is 2 in this case. Thus, (5^2) translates to: $\lfloor 5 \times 5 \rfloor$ Calculating this gives: $\lfloor 5 \times 5 = 25 \rfloor$ This confirms that the value of the expression (5^2) is indeed 25, making the correct choice the one that corresponds to this value. Understanding exponentiation is crucial for accurately calculating powers of numbers, as it establishes how many times the base should be used in multiplication.

6. In geometry, how many degrees are in a right angle?

- A. 45
- B. 90**
- C. 180
- D. 360

A right angle measures exactly 90 degrees. This fundamental concept is a cornerstone in geometry and is essential for understanding various geometric shapes and properties. A right angle is formed when two lines meet in such a way that they create four equal angles, each measuring 90 degrees. In practical terms, right angles are typically visualized with the corner of a square or rectangle, where the sides meet to create that perfect 90-degree bend. This characteristic is crucial in numerous applications, including architecture, carpentry, and various forms of design, where precise angles are needed to ensure stability and correctness. The other angles provided do not relate to the definition of a right angle. For instance, 45 degrees represents an acute angle, which is less than a right angle, while 180 degrees signifies a straight angle formed when two rays point in exactly opposite directions. A full rotation of a circle is 360 degrees, which encompasses all possible directions around a point and doesn't define a right angle at all. Knowing that a right angle is specifically 90 degrees allows individuals to correctly classify and work with angles in various geometric contexts.

7. What is the greatest common factor (GCF) of 8 and 12?

- A. 2
- B. 4**
- C. 6
- D. 8

To find the greatest common factor (GCF) of 8 and 12, we begin by identifying the factors of each number. The factors of 8 are: 1, 2, 4, 8. The factors of 12 are: 1, 2, 3, 4, 6, 12. Next, we look for the common factors between the two sets. The common factors of 8 and 12 are: 1, 2, and 4. Among these common factors, the greatest one is 4. Therefore, the greatest common factor of 8 and 12 is indeed 4. This means that 4 is the largest number that divides both 8 and 12 without leaving a remainder. Understanding this process is crucial because it shows how to systematically determine the GCF, which is useful for simplifying fractions, finding common denominators, and solving problems involving ratios.

8. What is the probability of selecting a red marble from a bag containing 3 red, 2 blue, and 5 green marbles?

- A. 1/2
- B. 1/3
- C. 3/10**
- D. 1/4

To determine the probability of selecting a red marble from the bag, it's essential to look at the total number of marbles and how many of those are red. In the bag, there are: - 3 red marbles - 2 blue marbles - 5 green marbles First, calculate the total number of marbles in the bag: $3 \text{ (red)} + 2 \text{ (blue)} + 5 \text{ (green)} = 10 \text{ marbles}$ in total. Now, we need to find the probability of selecting a red marble. The probability is calculated using the formula: Probability of an event = (Number of favorable outcomes) / (Total number of outcomes). In this case, the "favorable outcomes" are the number of red marbles, which is 3, and the "total outcomes" is the total number of marbles, which is 10. Therefore, the probability of selecting a red marble is: Probability of selecting a red marble = 3 (red marbles) / 10 (total marbles) = 3/10. This calculation shows that the chance of picking a red marble is indeed 3 out of 10, making this choice the correct answer.

9. Which method is primarily used to calculate the area of a circle?

- A. Length x Width**
- B. Pi x Radius squared**
- C. Base x Height**
- D. Perimeter x Height**

The correct method for calculating the area of a circle involves the formula Pi times the radius squared. This is derived from the geometric principles related to circles, where Pi (approximately 3.14) represents the ratio of the circumference of any circle to its diameter. In this formula, the radius is the distance from the center of the circle to any point on its edge. By squaring the radius (multiplying it by itself) and then multiplying by Pi, you effectively find the total area that occupies the space within the circle. The other methods listed are applicable to different shapes. For instance, length times width is used for rectangles, base times height pertains to triangles, and perimeter times height relates to the area of certain three-dimensional shapes, such as prisms. Thus, utilizing Pi times the radius squared is the precise and established approach for determining the area of a circle.

10. How do you calculate the degrees of a polygon?

- A. Angle degree = 90 (n-2)**
- B. Angle degree = 360 (n-2)**
- C. Angle degree = 180 (n-2)**
- D. Angle degree = 180n**

To calculate the sum of the interior angles of a polygon, you can use the formula that relates to the number of sides, denoted as $\frac{1}{2}(n-2)$. The correct formula is $\frac{1}{2}(180(n-2))$. This formula emerges from the fact that any polygon can be divided into triangles. Since the sum of the angles in a triangle is 180 degrees, and a polygon with n sides can be divided into $\frac{1}{2}(n-2)$ triangles, we multiply the number of triangles by 180 degrees, yielding the total sum of the interior angles. For instance, a triangle (3 sides) has a total angle measure of $\frac{1}{2}(180(3-2)) = 180$ degrees, while a quadrilateral (4 sides) has $\frac{1}{2}(180(4-2)) = 360$ degrees, and so forth. This pattern holds true for any polygon. The other formulas provided do not correctly represent the sum of interior angles. One suggests using 90 degrees, which does not apply to the calculation of polygon angles. Another using 360 degrees incorrectly assumes a relationship that does not exist for calculating interior angles, and the formula using $180n$ inaccurately represents the angle sum by

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://mathnasiumjobassmt.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE