Massachusetts Plumbers Journeyman Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What is the maximum allowable distance between stacks in an open parking garage?
 - **A.** 30 feet
 - B. 40 feet
 - **C.** 50 feet
 - D. 60 feet
- 2. What is a branch interval in plumbing terminology?
 - A. The distance from the building to the main sewer line
 - B. The distance between floor levels
 - C. The distance between horizontal branches on a stack
 - D. The length of a vent pipe
- 3. According to Massachusetts Plumbers regulations, what is the minimum size requirement for Temperature Relief Valves?
 - A. 1 inch
 - B. ½ inch
 - C. ¾ inch
 - D. 2 inches
- 4. When connecting three or more fittings together, how often should a hanger be placed based on the standard?
 - A. A. One hanger per fitting
 - B. B. One hanger every six feet
 - C. C. One hanger for every three feet or part thereof
 - D. D. No hanger required
- 5. What are the requirements for a floor flange used for a toilet or similar fixture composed of brass?
 - A. Minimum thickness of 1/16" inch
 - B. Minimum thickness of 1/8" inch
 - C. Minimum caulking depth of one inch
 - D. Minimum caulking depth of two inches

- 6. What should the metal tags on potable water lines read based on the text?
 - A. SAFE DRINKING WATER
 - **B. DRINKABLE**
 - C. SAFE WATER
 - **D. PURE WATER**
- 7. Which of the following fixtures are prohibited?
 - A. Exposed trap urinals
 - **B.** Flush valve toilets
 - C. Urinals with an invisible seal
 - D. Wall-hung urinals with a visible trap
- 8. What is required to change the diameter of a vent terminal, and how far below the roof surface should it occur?
 - A. Reducer, six inches
 - B. Increaser, one foot
 - C. Connector, two feet
 - D. Adapter, three feet
- 9. What is the capacity in Gallons Per Minute that a Deluge Shower must be able to discharge continuously?
 - A. 20 GPM
 - **B. 25 GPM**
 - **C. 30 GPM**
 - **D. 35 GPM**
- 10. Public water outlets should be equipped with devices that limit the outlet temperature to a maximum of?
 - A. 90°F
 - B. 100°F
 - C. 110°F
 - D. 120°F

Answers

- 1. D 2. C 3. C 4. C 5. B 6. C 7. C 8. B 9. C 10. C

Explanations

- 1. What is the maximum allowable distance between stacks in an open parking garage?
 - **A.** 30 feet
 - B. 40 feet
 - **C.** 50 feet
 - D. 60 feet

The maximum allowable distance between stacks in an open parking garage is established to ensure proper ventilation and to prevent the buildup of harmful gases. In Massachusetts, this distance is specified as 60 feet. This regulation is important because it helps to maintain air quality and safety in parking structures, ensuring that exhaust fumes have adequate space to disperse. A distance of 60 feet facilitates good airflow and minimizes the risk of gas accumulation, which can be hazardous to health. In contrast, shorter distances might not provide sufficient ventilation, leading to potential safety issues. A greater distance also accounts for the design and potential expansion of the garage, accommodating future needs without compromising safety standards.

- 2. What is a branch interval in plumbing terminology?
 - A. The distance from the building to the main sewer line
 - B. The distance between floor levels
 - C. The distance between horizontal branches on a stack
 - D. The length of a vent pipe

A branch interval in plumbing terminology refers to the distance between horizontal branches on a stack. This is important for maintaining proper drainage and venting in a plumbing system. The spacing of these branches must be carefully considered to ensure that waste flows effectively and to prevent issues such as clogs or backflow. In plumbing systems, the stack serves as the vertical conduit for waste and venting. The branches connect to this stack to direct waste from various fixtures. Understanding branch intervals is crucial for plumbers to design systems that comply with codes and function properly. The other choices describe different aspects of plumbing but do not accurately define a branch interval. For example, the distance from the building to the main sewer line pertains to the service connection, which is not related to branch intervals. Similarly, the distance between floor levels is relevant to the layout of a building but does not account for branch intervals directly, while the length of a vent pipe is concerned with venting and not specifically about the horizontal branches on a stack.

- 3. According to Massachusetts Plumbers regulations, what is the minimum size requirement for Temperature Relief Valves?
 - A. 1 inch
 - B. ½ inch
 - C. ¾ inch
 - D. 2 inches

The correct answer regarding the minimum size requirement for Temperature Relief Valves according to Massachusetts plumbing regulations is ¾ inch. This size is specified to ensure adequate discharge capacity for hot water tanks, which is essential for safety purposes. Temperature Relief Valves are crucial for preventing excessive pressure buildup in water heaters, which can lead to dangerous malfunctions or even explosions. Having a valve that is at least ¾ inch wide allows for efficient venting of excess steam and pressure. While smaller sizes may seem sufficient for certain applications, they do not meet the necessary discharge capacity needed to handle the significant pressure that can be generated in water heaters. Compliance with the ¾ inch standard helps maintain system integrity and safety in residential and commercial plumbing systems.

- 4. When connecting three or more fittings together, how often should a hanger be placed based on the standard?
 - A. A. One hanger per fitting
 - B. B. One hanger every six feet
 - C. C. One hanger for every three feet or part thereof
 - D. D. No hanger required

The correct response states that a hanger should be placed one for every three feet or part thereof when connecting three or more fittings together. This guideline is based on industry standards which ensure that the piping system is adequately supported, preventing excessive sagging and potential damage over time. Proper support is critical in plumbing installations, as it helps to maintain the integrity of the piping system and allows for ease of maintenance. By having a hanger every three feet or part thereof, you ensure that the fittings remain secure, aligned, and functional under various conditions, such as temperature changes and pressure fluctuations. The other choices do not conform to commonly accepted practices for plumbing installations. For instance, stating one hanger per fitting may lead to inadequate support if the fittings are spaced far apart. Suggesting one hanger every six feet could potentially allow for excessive movement or sagging of the pipes. Lastly, claiming that no hanger is required ignores the need for structural stability in plumbing systems.

5. What are the requirements for a floor flange used for a toilet or similar fixture composed of brass?

- A. Minimum thickness of 1/16" inch
- B. Minimum thickness of 1/8" inch
- C. Minimum caulking depth of one inch
- D. Minimum caulking depth of two inches

The requirement for a floor flange made of brass that is used for a toilet or similar fixture is a minimum thickness of 1/8 inch. This specification ensures that the flange is sturdy enough to support the fixture and withstand the stresses of frequent use without bending or breaking. A thicker flange contributes to the overall integrity and durability of the installation, allowing it to maintain a secure connection between the plumbing system and the toilet or fixture. This thickness also helps to provide a robust surface for sealing, which is essential in preventing water leaks. Understanding the significance of the 1/8 inch minimum thickness is crucial for proper installation and compliance with applicable plumbing codes, which prioritize safety and reliability in plumbing systems.

6. What should the metal tags on potable water lines read based on the text?

- A. SAFE DRINKING WATER
- **B. DRINKABLE**
- **C. SAFE WATER**
- D. PURE WATER

The metal tags on potable water lines should indicate "SAFE WATER" because this terminology clearly communicates that the water is suitable for drinking and safe for consumer use. Such labeling is crucial for ensuring public safety and compliance with regulations, as it provides immediate recognition of the water's quality and its intended use. While the other options also suggest quality drinking water, "SAFE WATER" is a widely recognized and standardized expression that best conveys the message of safety and potability in a concise manner. It emphasizes the safety aspect, which is essential in preventing confusion and promoting awareness about the water supply's integrity.

7. Which of the following fixtures are prohibited?

- A. Exposed trap urinals
- **B.** Flush valve toilets
- C. Urinals with an invisible seal
- D. Wall-hung urinals with a visible trap

The choice indicating that urinals with an invisible seal are prohibited is correct because these fixtures can create issues with hygiene, maintenance, and proper function. An invisible seal can sometimes lead to harboring bacteria and make it difficult to maintain or inspect the plumbing effectively. Therefore, plumbing codes often prohibit such designs to ensure sanitary conditions and ease of access for repairs and cleaning. The other options, while they may present design challenges in some contexts, do not generally fall under prohibitions as strict as for fixtures that cannot maintain hygiene and safety. For example, exposed trap urinals and wall-hung urinals with a visible trap are allowed, provided they meet specific code requirements regarding installation and maintenance. Flush valve toilets are also widely used fixtures that comply with regulations when correctly installed.

- 8. What is required to change the diameter of a vent terminal, and how far below the roof surface should it occur?
 - A. Reducer, six inches
 - B. Increaser, one foot
 - C. Connector, two feet
 - D. Adapter, three feet

The correct approach for changing the diameter of a vent terminal involves using an increaser, which allows for a smooth transition from a smaller diameter to a larger one, helping maintain proper airflow and preventing blockages in the ventilation system. In terms of placement, it is crucial that the vent terminal extends sufficiently above the roof to avoid any obstructions and ensure effective venting. The recommendation of one foot below the roof surface helps to ensure that the vent terminal is positioned correctly to allow for proper discharge of gases while minimizing the risk of backdrafts and ensuring compliance with building codes. This context helps clarify the importance of using an increaser along with the specified distance, which is based on industry standards and best practices for ventilation systems.

- 9. What is the capacity in Gallons Per Minute that a Deluge Shower must be able to discharge continuously?
 - A. 20 GPM
 - **B. 25 GPM**
 - **C. 30 GPM**
 - **D. 35 GPM**

The correct answer is 30 gallons per minute, which aligns with the standard requirements for a deluge shower. Deluge showers are specifically designed for emergency situations, such as in industrial settings where there is a risk of chemical exposure or fire hazards. The capacity of 30 GPM ensures that adequate water is discharged to effectively decontaminate or cool down individuals quickly and efficiently. This volume of water is crucial for the deluge system to function properly, as it allows for immediate coverage over the affected area, thereby providing the necessary safety measures in emergency scenarios. The standards for these systems are established to maximize the efficacy of emergency showers while ensuring compliance with safety regulations.

10. Public water outlets should be equipped with devices that limit the outlet temperature to a maximum of?

- A. 90°F
- B. 100°F
- C. 110°F
- D. 120°F

The correct answer indicates that public water outlets should be designed to limit the outlet temperature to a maximum of 110°F. This temperature is considered a safe threshold to prevent scalding or burns, which can occur at higher temperatures. The rationale for this standard involves ensuring the safety of users, especially vulnerable populations such as children and the elderly, who are at a higher risk for thermal injuries. Regulations and guidelines set by health and safety organizations often recommend this temperature as part of safe plumbing practices to promote public health. Setting the limit at 110°F helps strike a balance between providing water that is adequately warm for comfort while preventing the risk of burns. The other options reflect temperatures that would either be too low, potentially leading to discomfort or inadequate washing and sanitation, or too high, significantly increasing the risk of thermal injury.