

Massachusetts Comprehensive Assessment System (MCAS) Biology Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which sequence correctly orders the parts involved in protein synthesis, packaging, and export?**
 - A. Golgi complex → ribosome → endoplasmic reticulum → cell membrane**
 - B. Ribosome → cell membrane → Golgi complex → endoplasmic reticulum**
 - C. Ribosome → endoplasmic reticulum → Golgi complex → cell membrane**
 - D. Endoplasmic reticulum → Golgi complex → ribosome → cell membrane**
- 2. What does allele frequency represent?**
 - A. The total number of genes in a population**
 - B. The relative frequency of an allele at a genetic locus in a population**
 - C. The proportion of dominant traits expressed**
 - D. The variability of traits in offspring**
- 3. What is the primary source of energy utilized by plants in the process of making sugar?**
 - A. Water**
 - B. Light energy**
 - C. Carbon dioxide**
 - D. Soil nutrients**
- 4. What molecule provides the energy necessary for active transport protein pumps?**
 - A. Glucose**
 - B. ATP**
 - C. NADH**
 - D. ADP**
- 5. Which process in the human digestive system involves transporting food to another organ?**
 - A. Absorption of nutrients**
 - B. Mechanical breakdown of food**
 - C. Elimination of wastes**
 - D. Transportation of food**

6. What is the primary site for gas exchange in the lungs?

- A. Bronchioles**
- B. Alveoli**
- C. Bronchi**
- D. Trachea**

7. What characteristic is unique to a mutualistic relationship?

- A. Only one organism benefits**
- B. Both organisms are harmed**
- C. Both organisms benefit from the interaction**
- D. Neither organism is affected**

8. What is the probability that two heterozygous parents will have a child with galactosemia?

- A. 100%**
- B. 50%**
- C. 75%**
- D. 25%**

9. Which type of RNA is involved in protein synthesis?

- A. Ribosomal RNA (rRNA)**
- B. Transfer RNA (tRNA)**
- C. Messenger RNA (mRNA)**
- D. Small nuclear RNA (snRNA)**

10. What cellular process produces haploid cells from a diploid cell?

- A. Fertilization**
- B. Meiosis**
- C. Mitosis**
- D. Binary fission**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. D
6. B
7. C
8. D
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. Which sequence correctly orders the parts involved in protein synthesis, packaging, and export?

- A. Golgi complex → ribosome → endoplasmic reticulum → cell membrane
- B. Ribosome → cell membrane → Golgi complex → endoplasmic reticulum
- C. Ribosome → endoplasmic reticulum → Golgi complex → cell membrane**
- D. Endoplasmic reticulum → Golgi complex → ribosome → cell membrane

The sequence that correctly orders the parts involved in protein synthesis, packaging, and export is ribosome → endoplasmic reticulum → Golgi complex → cell membrane. This order reflects the actual flow of protein synthesis and processing within the cell. Ribosomes are the cellular structures where protein synthesis begins, translating messenger RNA (mRNA) into polypeptide chains. Once proteins are synthesized, they are often translated into the rough endoplasmic reticulum (ER), which is where they undergo initial folding and structural modifications. Following their synthesis and initial processing in the ER, proteins are transported to the Golgi complex. The Golgi apparatus serves as a processing center where proteins are further modified, sorted, and packaged into vesicles for export. Finally, these vesicles fuse with the cell membrane, allowing for the secretion of proteins outside the cell or their integration into the membrane. This sequence illustrates the sequential nature of these cellular processes, highlighting the critical roles each component plays in ensuring that proteins are correctly synthesized, modified, and exported.

2. What does allele frequency represent?

- A. The total number of genes in a population
- B. The relative frequency of an allele at a genetic locus in a population**
- C. The proportion of dominant traits expressed
- D. The variability of traits in offspring

Allele frequency represents the relative frequency of an allele at a specific genetic locus within a population. It is a key concept in population genetics that helps researchers understand how often a particular allele appears in a genetic pool relative to other alleles. This is crucial for studying evolutionary processes, as it reflects how genetic diversity is distributed among individuals in a population and how that diversity may change over generations due to mechanisms such as natural selection, genetic drift, and gene flow. In contrast, measuring the total number of genes in a population does not provide information on allele variation and its significance. The proportion of dominant traits expressed focuses only on phenotype rather than the underlying genetic variation, while the variability of traits in offspring strays into the field of inheritance rather than directly addressing the concept of allele frequencies.

3. What is the primary source of energy utilized by plants in the process of making sugar?

- A. Water**
- B. Light energy**
- C. Carbon dioxide**
- D. Soil nutrients**

The primary source of energy utilized by plants in the process of making sugar is light energy. During photosynthesis, plants capture light energy from the sun, using chlorophyll in their chloroplasts to convert it into chemical energy. This light energy drives the chemical reactions that combine carbon dioxide and water to form glucose, a type of sugar that plants use as a source of energy and as a building block for growth. While water and carbon dioxide are essential raw materials in this process, they do not provide the energy needed for the chemical reactions to take place. Soil nutrients support plant health and growth but do not directly contribute energy in the sugar-making process. Thus, the correct answer focuses on the critical role of light energy in enabling plants to synthesize sugars through photosynthesis.

4. What molecule provides the energy necessary for active transport protein pumps?

- A. Glucose**
- B. ATP**
- C. NADH**
- D. ADP**

The molecule that provides the energy necessary for active transport protein pumps is ATP, or adenosine triphosphate. Active transport is a crucial cellular process in which substances are moved across cell membranes against their concentration gradient, meaning that energy is required to do this. ATP serves as the primary energy currency of the cell. When ATP is broken down into ADP (adenosine diphosphate) and an inorganic phosphate group, a significant amount of energy is released. This energy release is what fuels the protein pumps involved in active transport, allowing them to function effectively and move ions or molecules into or out of the cell as needed. Other options, while they play important roles in cellular metabolism and energy transfer, do not directly provide the energy for active transport. Glucose can be broken down to produce ATP, but it is not used directly by the pumps themselves. NADH is primarily involved in redox reactions and cellular respiration to produce ATP, and ADP is a product of the ATP breakdown and is not an energy source for the pumps. Thus, ATP is essential for the function of active transport protein pumps, making it the correct answer.

5. Which process in the human digestive system involves transporting food to another organ?

- A. Absorption of nutrients**
- B. Mechanical breakdown of food**
- C. Elimination of wastes**
- D. Transportation of food**

The process that specifically involves transporting food to another organ is accurately identified here. In the human digestive system, transportation of food primarily occurs through the esophagus, a muscular tube that connects the throat (pharynx) with the stomach. This process follows ingestion, where food is chewed and mixed with saliva, forming a bolus. The bolus then moves down the esophagus via a series of coordinated muscle contractions known as peristalsis, which propel the food into the stomach for further digestion. The other processes listed do not focus on the act of transportation. Absorption of nutrients occurs later in the digestive process, mainly within the small intestine, where digested nutrients pass through the intestinal walls into the bloodstream. Mechanical breakdown refers to the physical actions taken to reduce food size, such as chewing and churning in the stomach, but this does not entail moving food to a different organ. Elimination of wastes pertains to the removal of undigested material and byproducts from the body, which occurs in the large intestine and rectum, following nutrient absorption. Thus, while all these processes are essential to digestion, the transportation of food directly addresses the movement of food between organs, specifically from one organ to the next in the digestive tract.

6. What is the primary site for gas exchange in the lungs?

- A. Bronchioles**
- B. Alveoli**
- C. Bronchi**
- D. Trachea**

The alveoli are the primary site for gas exchange in the lungs due to their unique structure and function. These tiny, balloon-like sacs are located at the end of the bronchioles and provide a large surface area for the diffusion of gases. This surface area is essential because it allows oxygen to enter the bloodstream and carbon dioxide to exit efficiently. Alveoli are surrounded by a network of capillaries, which are small blood vessels that facilitate this gas exchange process. The walls of the alveoli and the capillaries are extremely thin, creating a short diffusion path that further enhances the efficiency of gas exchange. As oxygen moves from the alveoli into the blood, carbon dioxide moves from the blood into the alveoli to be exhaled. In contrast, the bronchi, bronchioles, and trachea primarily serve roles in conducting air to and from the lungs, rather than participating directly in gas exchange.

7. What characteristic is unique to a mutualistic relationship?

- A. Only one organism benefits
- B. Both organisms are harmed
- C. Both organisms benefit from the interaction**
- D. Neither organism is affected

In a mutualistic relationship, both organisms involved derive benefits from their interaction, which is a defining characteristic of this type of symbiosis. This relationship showcases the cooperation between species, where both may gain resources such as nutrients or protection. For example, in a mutualistic partnership between bees and flowering plants, bees obtain nectar while assisting in pollination, which is vital for the plants' reproduction. The other options describe different types of relationships. When only one organism benefits, it describes a parasitic or commensal relationship where the other organism may not necessarily gain an advantage or may be harmed. In cases where both organisms are harmed, a competitive or antagonistic interaction is taking place, indicating a struggle for resources. If neither organism is significantly affected, it resembles a neutral interaction, which singularly lacks the mutual benefit characteristic that defines mutualism. Therefore, the key trait of mutualism is that both organisms reap benefits from their interaction.

8. What is the probability that two heterozygous parents will have a child with galactosemia?

- A. 100%
- B. 50%
- C. 75%
- D. 25%**

The correct answer is based on the principles of Mendelian genetics, specifically looking at a genetic condition that follows a recessive inheritance pattern like galactosemia. For a trait that is recessively inherited, an individual must inherit two copies of the recessive allele to express the condition. If both parents are heterozygous for galactosemia, it means they each have one normal allele (dominant) and one allele for the recessive condition (galactosemia). We can denote the normal allele as "G" and the allele for galactosemia as "g." Therefore, each parent's genotype is Gg. When these parents have a child, we can determine the probability of the child inheriting the different combinations of alleles using a Punnett square, which shows all the possible genotypes that could result from their mating: - GG (normal) - Gg (normal carrier) - gG (normal carrier) - gg (affected by galactosemia) In the Punnett square: 1. The chance of getting GG is 1 out of 4 (25%). 2. The chance of getting Gg or gG is 2 out of 4 (50%). 3. The chance

9. Which type of RNA is involved in protein synthesis?

- A. Ribosomal RNA (rRNA)
- B. Transfer RNA (tRNA)
- C. Messenger RNA (mRNA)**
- D. Small nuclear RNA (snRNA)

Messenger RNA (mRNA) is crucial in the process of protein synthesis because it serves as the intermediary that conveys genetic information from DNA to the ribosomes, the cellular machinery responsible for assembling proteins. During transcription, mRNA is synthesized from a DNA template, capturing the sequence of nucleotides that correspond to a particular gene. Once formed, mRNA travels from the nucleus to the cytoplasm, where it binds to ribosomes. The ribosome reads the sequence of nucleotides on the mRNA in sets of three, called codons, each of which corresponds to a specific amino acid. This translates the genetic instructions into a sequence of amino acids, ultimately forming a protein. In contrast, ribosomal RNA (rRNA) is a structural component of ribosomes and plays a vital role in the actual process of translation, but it does not convey the genetic code. Transfer RNA (tRNA) aids in translating the mRNA sequence into a protein by bringing the appropriate amino acids to the ribosome, but it cannot carry the genetic information itself. Small nuclear RNA (snRNA) is involved in the process of splicing pre-mRNA but does not play a direct role in protein synthesis. Thus, mRNA is the specific type of RNA that

10. What cellular process produces haploid cells from a diploid cell?

- A. Fertilization
- B. Meiosis**
- C. Mitosis
- D. Binary fission

Meiosis is the cellular process responsible for producing haploid cells from a diploid cell. In organisms that reproduce sexually, meiosis is crucial for creating gametes (sperm and egg cells). A diploid cell, which contains two sets of chromosomes (one from each parent), undergoes two rounds of division during meiosis, ultimately resulting in four haploid cells, each with only one set of chromosomes. This reduction in chromosome number is essential for maintaining the species' chromosome count across generations, ensuring that when fertilization occurs, the resulting zygote has the correct diploid number. In contrast, fertilization involves the fusion of two haploid gametes to form a diploid zygote, while mitosis is a process of cell division that produces two identical diploid daughter cells, maintaining the original chromosome number. Binary fission is a form of asexual reproduction seen in prokaryotic organisms, resulting in two identical cells and is not involved in the production of haploid cells.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://mcas-biology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE