

Maryland Erosion and Sediment (E&S) Control Certification Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which type of earth dike may NOT be used for clear water diversion?**
 - A. A-1**
 - B. A-2**
 - C. B-2**
 - D. A-3**
- 2. What type of inlet protection should be used for a curb inlet with an associated open grate on the road?**
 - A. Standard inlet protection**
 - B. Curb inlet protection**
 - C. At-grade inlet protection**
 - D. Combination inlet protection**
- 3. Who is responsible for reviewing and approving erosion and sediment control plans in Maryland?**
 - A. All local governments**
 - B. The Maryland Department of the Environment**
 - C. Only federal agencies**
 - D. Private contractors**
- 4. Incremental stabilization should occur for every _____ feet of cut or fill?**
 - A. 5**
 - B. 15**
 - C. 30**
 - D. 35**
- 5. Is stabilization of a temporary stockpile required if it is within an area controlled by other sediment control practices?**
 - A. True**
 - B. False**

6. What is a mountable berm typically used for?

- A. Diverting water**
- B. Restricting access**
- C. Allowing construction equipment to traverse earth dikes**
- D. Enhancing soil stability**

7. What is the minimum width required for a riprap inflow channel?

- A. Two feet**
- B. Three feet**
- C. Four feet**
- D. Five feet**

8. What material is used to filter sediment-laden water in standard inlet protection?

- A. Woven slit film geotextile**
- B. Woven monofilament geotextile**
- C. Nonwoven geotextile**
- D. 2" - 3" stone**

9. What is required between the two stone types in a stone check dam?

- A. woven slit film geotextile**
- B. nonwoven geotextile**
- C. woven monofilament geotextile**
- D. None of the above**

10. In what year did Maryland law require all counties and municipalities to establish erosion and sediment control?

- A. 1992**
- B. 1985**
- C. 1970**
- D. 2001**

Answers

SAMPLE

1. A
2. D
3. B
4. B
5. B
6. C
7. C
8. A
9. D
10. C

SAMPLE

Explanations

SAMPLE

1. Which type of earth dike may NOT be used for clear water diversion?

- A. A-1**
- B. A-2**
- C. B-2**
- D. A-3**

The type of earth dike that may not be appropriate for clear water diversion is classified as A-1. This classification typically pertains to earth dikes designed for specific purposes that may not prioritize clear water management. In the context of erosion and sediment control, clear water diversions are intended to separate uncontaminated water flow from the construction site to minimize sediment transport. Dikes that are suited for this purpose are usually constructed with specific characteristics that enable them to direct flow effectively without contributing to sediment loading. The A-1 classification may involve conditions or designs that compromise their effectiveness in diverting clear water, such as insufficient side slopes or structural integrity to manage water flow without erosion. On the other hand, the other classifications, such as A-2, B-2, and A-3, are likely designed to handle the dynamics of clear water more efficiently, making them more suitable for use in these types of applications. Understanding the specific uses and design constraints of each type of dike is crucial for ensuring proper erosion and sediment control practices, which can contribute significantly to environmental protection during construction activities.

2. What type of inlet protection should be used for a curb inlet with an associated open grate on the road?

- A. Standard inlet protection**
- B. Curb inlet protection**
- C. At-grade inlet protection**
- D. Combination inlet protection**

The most appropriate choice for a curb inlet with an associated open grate on the road is combination inlet protection. This type of inlet protection is specifically designed to address both the curb inlet area and the open grate, effectively capturing sediment and debris before they can enter the drainage system. Using combination inlet protection is essential in situations where both components are present because it ensures that runoff from the road is properly filtered. The design typically incorporates features that allow for the management of stormwater while preventing sediment-laden water from bypassing the protection measures. This ensures that sediment control is maximized while still allowing for efficient drainage. Inlet protection types such as standard inlet protection, curb inlet protection, or at-grade inlet protection do not adequately account for the unique configuration of a curb inlet with an open grate. Therefore, they may not provide comprehensive control of sediment and erosion, which is critical in maintaining water quality and infrastructure integrity.

3. Who is responsible for reviewing and approving erosion and sediment control plans in Maryland?

- A. All local governments**
- B. The Maryland Department of the Environment**
- C. Only federal agencies**
- D. Private contractors**

The Maryland Department of the Environment is responsible for the review and approval of erosion and sediment control plans within the state. This agency has been designated to ensure that development projects comply with state regulations aimed at preventing soil erosion and sedimentation, which can have detrimental effects on waterways and the environment. Erosion and sediment control plans must adhere to specific guidelines established by the Department to effectively minimize the impact of construction activities. The Department's role includes providing oversight, technical assistance, and enforcement to maintain the integrity of Maryland's natural resources. This centralization of responsibility helps ensure consistency and adherence to best management practices throughout the state. While local governments play a role in implementing these plans at a community level and ensuring compliance with local codes, the ultimate authority and responsibility for these reviews lie with the Maryland Department of the Environment. Other entities, such as federal agencies and private contractors, do not have the primary legal responsibility for the assessment and approval of these plans in the state.

4. Incremental stabilization should occur for every _____ feet of cut or fill?

- A. 5**
- B. 15**
- C. 30**
- D. 35**

Incremental stabilization is a critical practice in erosion and sediment control, particularly for construction projects involving cut or fill activities. It refers to the process of implementing stabilization measures, such as seeding, mulching, or installing erosion control blankets, at specific intervals during grading work to minimize the risk of soil erosion. According to Maryland's Erosion and Sediment Control Guidelines, stabilization measures should be applied for every 15 feet of cut or fill. This guideline ensures that the exposed soil does not remain bare for extended periods, which can lead to increased erosion, sedimentation, and potential pollution of nearby water bodies. By implementing stabilization measures at this interval, it is more feasible to manage sediment runoff and protect local waterways, especially after significant disturbances. Understanding the importance of timely stabilization and adhering to the 15-foot guideline is essential for effective erosion control on construction sites. This proactive approach helps meet regulatory requirements and promotes sustainable land use practices.

5. Is stabilization of a temporary stockpile required if it is within an area controlled by other sediment control practices?

A. True

B. False

Stabilization of a temporary stockpile is not required if it is within an area controlled by other sediment control practices because the existing measures in place are deemed sufficient to manage potential erosion and sedimentation from the stockpile. If the sediment control practices surrounding the stockpile are effective and functioning as intended, they can adequately prevent sediment from moving off site. The intention of sediment control measures is to minimize the impacts of erosion and sediment transport, and if the area is already protected by these practices, additional stabilization of the stockpile may not be necessary. This consideration is crucial in ensuring that resources are used efficiently while maintaining compliance with regulations aimed at protecting water quality and managing erosion effectively. The focus should be on the effectiveness of the existing controls, rather than implementing redundant measures in an already protected area.

6. What is a mountable berm typically used for?

A. Diverting water

B. Restricting access

C. Allowing construction equipment to traverse earth dikes

D. Enhancing soil stability

A mountable berm is primarily designed to allow construction equipment to traverse earth dikes without significant disruption to the berm structure itself. This feature enables the movement of heavy machinery across the dike while maintaining its integrity, which is crucial in construction and land development scenarios where access is necessary for ongoing work and project management. The design of a mountable berm typically includes a sloped or rounded top, making it easier for vehicles to pass over without damaging the berm or causing erosion. This ensures that the site remains properly managed while still enabling effective movement of construction resources. While other functions such as diverting water or enhancing soil stability are also important in erosion and sediment control, the defining characteristic of a mountable berm is its function related to allowing equipment access.

7. What is the minimum width required for a riprap inflow channel?

A. Two feet

B. Three feet

C. Four feet

D. Five feet

The minimum width required for a riprap inflow channel is four feet. This measurement is crucial because a wider channel helps to effectively accommodate the volume of flow expected during storm events, thereby reducing erosion and sediment transport into nearby water bodies. A four-foot width is typically designed to prevent excessive velocity of water, allowing sediment to settle instead of being washed away, which is essential for maintaining the integrity of the surrounding environment. Proper sizing of the inflow channel is fundamental in implementing effective erosion and sediment control practices that comply with Maryland regulations.

8. What material is used to filter sediment-laden water in standard inlet protection?

- A. Woven slit film geotextile**
- B. Woven monofilament geotextile**
- C. Nonwoven geotextile**
- D. 2" - 3" stone**

The correct material used to filter sediment-laden water in standard inlet protection is woven slit film geotextile. This type of geotextile is designed specifically for applications involving erosion and sediment control due to its effective filtration properties. Woven slit film geotextiles are made from slit film fibers, which provide a robust structure that allows for efficient water flow while effectively trapping sediment particles. In the context of erosion and sediment control, standard inlet protection is used to help prevent sediment from entering stormwater inlets during construction or land-disturbing activities. The woven slit film geotextile allows water to percolate through while capturing sediment, thereby helping to maintain water quality and prevent clogging of stormwater systems. The other materials listed, while they have their uses in different contexts, do not provide the same level of filtration efficiency and structural integrity required for inlet protection. For example, woven monofilament geotextiles, while effective for other applications, do not typically offer the same filtration capabilities as slit film options. Nonwoven geotextiles may also serve as filtration solutions, but they are typically used in different contexts, such as separation or drainage, rather than directly filtering sediment-laden water in an inlet protection scenario.

9. What is required between the two stone types in a stone check dam?

- A. woven slit film geotextile**
- B. nonwoven geotextile**
- C. woven monofilament geotextile**
- D. None of the above**

In the construction of a stone check dam, the primary purpose is to slow down water runoff, reduce soil erosion, and promote sediment deposition. The design of these structures generally relies on the properties of the stone material used to ensure adequate filtration and structural integrity. Typically, no geotextile fabric is required between the two types of stone—such as coarse and fine aggregate—that might be used in a check dam. The stones should be placed in a manner that allows for effective interlocking, which helps maintain the stability and functionality of the dam. The infiltration capacity and drainage are influenced more by the arrangement and size of the stones than by the addition of a geotextile layer. This is why the correct answer indicates that there is no geotextile requirement in this scenario. Utilizing materials like woven or nonwoven geotextiles is common in other applications, such as reinforcing soil or separating different soil layers, but those functions do not apply to the intended use and design of stone check dams. Therefore, the absence of a necessary material between stone types makes the first three options inappropriate for this specific practice.

10. In what year did Maryland law require all counties and municipalities to establish erosion and sediment control?

- A. 1992**
- B. 1985**
- C. 1970**
- D. 2001**

Maryland law mandated that all counties and municipalities establish erosion and sediment control practices starting in 1970. This legislative requirement was a significant step towards mitigating erosion and managing sediment, particularly in relation to development and land disturbance activities. The purpose was to reduce the impact of these activities on water quality and to manage the detrimental effects of soil erosion actively. The 1970 requirement highlights Maryland's proactive approach to addressing environmental concerns even in the earlier stages of modern environmental regulation. Over time, these regulations have been updated and refined to enhance the effectiveness of erosion and sediment control measures in various development contexts. Understanding this historical context is crucial for those involved in land management and environmental protection efforts within the state.

SAMPLE

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://marylanderosionsedimentcontrol.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE