

Load Calculations - Feeders and Services (26401)

Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How do demand factors for commercial applications differ from residential?**
 - A. The application is typically more diversified and often lower**
 - B. The application is uniform and generally higher**
 - C. There are no significant differences**
 - D. The application is less regulated**
- 2. The neutral conductor is primarily used to:**
 - A. Carry the total load**
 - B. Provide a path for unbalanced current**
 - C. Ground the electrical system**
 - D. Support overhead lines**
- 3. What factor increases as the power factor decreases in load calculations?**
 - A. Voltage drop**
 - B. Amperage required for the same wattage**
 - C. Efficiency of the wiring**
 - D. Distance from the service equipment**
- 4. Why do you need to investigate the existing loads when performing load calculations?**
 - A. To estimate future load requirements**
 - B. To ensure feeders can handle accumulated loads**
 - C. To reduce installation costs**
 - D. To determine the age of the electrical system**
- 5. Which factor is NOT typically considered when calculating load demand for healthcare facilities?**
 - A. Equipment criticality**
 - B. Backup power requirements**
 - C. Recreational space usage**
 - D. Emergency power systems**

6. What materials are primarily considered in determining conductor ampacity?

- A. The insulation type and environmental factors**
- B. The conductor material and installation conditions**
- C. The diameter of the conductor**
- D. The color of the insulation**

7. Which factor does NOT affect conductor ampacity adjustments?

- A. Ambient temperature**
- B. Continuous or noncontinuous load**
- C. Number of conductors in a raceway**
- D. Number of phases**

8. What is the minimum general lighting load, in VA per square foot, required by the NEC for a store?

- A. 3**
- B. 2-1/2**
- C. 5**
- D. 2**

9. What is the typical demand factor applied to general lighting in load calculations?

- A. 100% of the first 5 kVA and 25% of the remainder**
- B. 80% of the total load**
- C. 100% of the first 10 kVA and 50% of the remainder**
- D. 50% of all connected load**

10. What is ampacity in the context of feeders?

- A. The speed at which electricity flows**
- B. The maximum amount of electric current a conductor can carry**
- C. The minimum load capacity required for a feeder**
- D. The total demand for all connected loads**

Answers

SAMPLE

1. A
2. B
3. B
4. B
5. C
6. B
7. D
8. A
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. How do demand factors for commercial applications differ from residential?

- A. The application is typically more diversified and often lower**
- B. The application is uniform and generally higher**
- C. There are no significant differences**
- D. The application is less regulated**

Demand factors for commercial applications are often more diversified compared to residential applications due to the variety of services and equipment used in commercial settings. In commercial environments, different types of equipment may operate at varying times and loads, leading to a more balanced overall demand. For instance, while some equipment may have a high load at certain times, others may not be in use, creating a scenario where the peak demand is spread out rather than concentrated. This diversification tends to lower the overall peak demand factor used in load calculations for commercial systems. In contrast, residential applications usually have a more consistent load profile with certain appliances, like heating and cooling systems, creating peak demands that are more predictable and often higher compared to the diversified demand in commercial settings. This is why understanding the specific demand characteristics of commercial versus residential applications is crucial for accurate load calculations.

2. The neutral conductor is primarily used to:

- A. Carry the total load**
- B. Provide a path for unbalanced current**
- C. Ground the electrical system**
- D. Support overhead lines**

The primary function of the neutral conductor is to provide a path for unbalanced current in a multi-phase electrical system. In a balanced load scenario, the current flowing through the phase conductors is equal and opposite in average, resulting in no current flowing through the neutral. However, when there are variations in load, such as in single-phase branch circuits or imbalances in three-phase systems, the neutral serves to carry the return current from the unbalanced load back to the supply. This is crucial for maintaining system stability and safety, as it helps to ensure that differences in load do not cause an unsafe buildup of voltage in any of the phases. The neutral conductor also helps in stabilizing the overall system and facilitates the proper functioning of safety devices, like circuit breakers, by ensuring that fault currents have a designated return path. The other options, while they describe relevant aspects of electrical systems, do not accurately define the primary purpose of the neutral conductor. The total load is carried by all conductors, including the phases; grounding relates to safety and protecting equipment; and supporting overhead lines pertains to cable management rather than the function of a neutral conductor.

3. What factor increases as the power factor decreases in load calculations?

- A. Voltage drop
- B. Amperage required for the same wattage**
- C. Efficiency of the wiring
- D. Distance from the service equipment

When considering load calculations, the relationship between power factor and amperage is crucial. The power factor is a measure of how effectively electrical power is being converted into useful work output, expressed as a ratio between actual power (watts) and apparent power (volt-amperes). As the power factor decreases, it indicates that more of the electrical energy is being wasted as reactive power instead of being converted to useful work. To maintain the same real power (watts), a lower power factor means that the system needs a higher amount of apparent power (volt-amperes) to deliver that same amount of real power. Since power (in watts) is the product of voltage (in volts) and current (in amperes), if you keep the voltage constant, a higher apparent power will require a higher current (amperage) to achieve the same wattage. This relationship clearly shows that when the power factor goes down, the amperage required for a given amount of wattage increases. Therefore, maintaining an efficient power factor is important not only for energy efficiency but also for determining appropriate conductor sizes and load handling capabilities in electrical systems.

4. Why do you need to investigate the existing loads when performing load calculations?

- A. To estimate future load requirements
- B. To ensure feeders can handle accumulated loads**
- C. To reduce installation costs
- D. To determine the age of the electrical system

Investigating existing loads is crucial for ensuring that feeders can adequately handle the accumulated loads. Load calculations are essential to prevent overload situations that can lead to system failures, fires, or other safety hazards. By analyzing current load conditions, you can confirm that the infrastructure—such as the feeders and service panels—is rated appropriately for the existing demand. This assessment allows for any necessary upgrades or modifications to be made before further expansion or changes to the electrical system occur. A focus on understanding how much current is already being drawn helps in achieving compliance with electrical codes and standards, which is important for safety and reliability. This knowledge also assists in planning for future load requirements, making cost-efficient decisions, and ensuring that older systems are not left inadequately supported.

5. Which factor is NOT typically considered when calculating load demand for healthcare facilities?

- A. Equipment criticality**
- B. Backup power requirements**
- C. Recreational space usage**
- D. Emergency power systems**

In calculating load demand for healthcare facilities, factors such as equipment criticality, backup power requirements, and emergency power systems are essential. These elements ensure that the facility can operate effectively in both normal and emergency conditions, providing necessary care without interruption. Equipment criticality relates to understanding which machines and devices are vital for patient care and must always have power. Backup power requirements are crucial because healthcare facilities must have contingency plans to maintain operations during outages. Emergency power systems are directly linked to this, as they provide a fail-safe mechanism, ensuring that vital systems remain powered when the main supply is disrupted. In contrast, recreational space usage does not typically factor into load demand calculations. While recreational areas may contribute to the overall comfort and well-being of patients and staff, they do not have the same critical need for constant power as medical equipment and emergency systems. Thus, when assessing the load demand, recreational spaces are considered less significant in terms of electrical supply requirements. This distinction makes recreational space usage the option that is not central to load calculations in healthcare facilities.

6. What materials are primarily considered in determining conductor ampacity?

- A. The insulation type and environmental factors**
- B. The conductor material and installation conditions**
- C. The diameter of the conductor**
- D. The color of the insulation**

The determination of conductor ampacity - which refers to the maximum amount of electric current a conductor or device can carry before sustaining immediate or progressive alterations in its physical and electrical properties - hinges on a couple of key factors. Primary among these are the conductor material and the installation conditions. Conductor material, such as copper or aluminum, plays a significant role due to the inherent differences in electrical resistance and heat dissipation characteristics of these materials. For instance, copper has a lower resistance than aluminum, allowing it to carry more current for the same temperature rise. Installation conditions also affect ampacity by accounting for factors like ambient temperature, whether the conductor is installed in free air or conduit, and the proximity to other heat-generating sources. These conditions dictate how effectively heat can escape from the conductor, which is critical to maintaining safe operating temperatures. In contrast, factors like the diameter of the conductor or even the color of the insulation might have some relevance in a broader context, but they don't primarily determine ampacity. The insulation type and environmental factors are more indirectly related, often influencing but not defining the maximum current capacity of a conductor. Overall, the relationship between conductor material and installation conditions provides a comprehensive understanding of how ampacity is accurately assessed.

7. Which factor does NOT affect conductor ampacity adjustments?

- A. Ambient temperature**
- B. Continuous or noncontinuous load**
- C. Number of conductors in a raceway**
- D. Number of phases**

The selection of the answer is based on the understanding that the ampacity of conductors is primarily influenced by environmental and loading conditions. Ambient temperature, whether the load is continuous or noncontinuous, and the number of conductors grouped together in a raceway all directly impact how much current a conductor can safely carry without overheating. Ambient temperature affects the resistance of the conductor; higher temperatures can reduce ampacity. The distinction between continuous and noncontinuous loads is crucial because continuous loads can result in elevated temperatures over time, necessitating adjustments for safety. The number of conductors in a raceway also plays a role, as multiple conductors can result in additional heat due to derating factors, requiring further adjustments to ampacity. However, the number of phases does not influence the ampacity calculations in the same manner. While it is important for understanding the distribution of loads in three-phase systems, the number of phases does not affect the intrinsic current-carrying capacity of an individual conductor. Instead, it is more related to how power is delivered and used, rather than the physical limitations of the conductors themselves. Thus, this factor does not require adjustments to ampacity calculations.

8. What is the minimum general lighting load, in VA per square foot, required by the NEC for a store?

- A. 3**
- B. 2-1/2**
- C. 5**
- D. 2**

The minimum general lighting load required by the NEC (National Electrical Code) for a store is indeed outlined in Article 220, which specifies that the minimum value is 3 volt-amperes (VA) per square foot. This value is established to ensure adequate illumination for commercial spaces, which are expected to accommodate various activities and provide a safe and comfortable environment for customers and employees. The specification of 3 VA per square foot takes into consideration the lighting needs associated with retail environments, where visibility for products and signage is crucial. By adhering to this minimum standard, store owners can ensure that they are providing sufficient lighting levels as required by code, which also plays a role in factors such as safety and energy efficiency. This figure is supported by various building codes and regulations to maintain consistency in how lighting loads are calculated. In comparison, the other choices reflect different standards or loads that may apply under different circumstances, but do not meet the NEC requirements for a store environment specifically.

9. What is the typical demand factor applied to general lighting in load calculations?

- A. 100% of the first 5 kVA and 25% of the remainder
- B. 80% of the total load
- C. 100% of the first 10 kVA and 50% of the remainder**
- D. 50% of all connected load

The correct approach to applying demand factors for general lighting in load calculations is based on a standard practice outlined in electrical codes. In this context, the demand factor refers to the percentage of the connected load that is expected to be used at any given time. The appropriate demand factor method involves taking 100% of the first 10 kVA of the connected load, as this recognizes that the initial portion of lighting load is likely to be fully utilized. Beyond this threshold, it is reasonable to apply a reduced demand factor of 50% to the remainder of the load, reflecting the reality that not all lighting will be on simultaneously at all times. This approach helps in making more accurate load calculations while ensuring that the feeder and service equipment can handle peak demand without being oversized. In contrast, using 100% of the first 5 kVA and 25% of the remainder, an 80% reduction of the total load, or 50% of all connected load would not accurately represent the real-world usage patterns of general lighting. Thus, option C stands out as the most consistent with established electrical guidelines.

10. What is ampacity in the context of feeders?

- A. The speed at which electricity flows
- B. The maximum amount of electric current a conductor can carry**
- C. The minimum load capacity required for a feeder
- D. The total demand for all connected loads

Ampacity refers specifically to the maximum amount of electric current that a conductor, such as a wire or cable, can safely carry without exceeding its temperature rating and potentially causing damage. This concept is crucial in electrical engineering and installations, as it ensures that conductors are adequately sized for the loads they will carry, preventing overheating and maintaining system reliability. Understanding ampacity is essential when designing electrical systems, especially feeders, because if the current exceeds the ampacity of the conductor, it can lead to insulation breakdown and create hazardous conditions, including fires. Factors such as the type of conductor material, its size, ambient temperature, and installation conditions can all influence a wire's ampacity. The other choices involve different aspects of electrical systems but do not define ampacity directly. While the speed of electricity is related to electrical theory, it does not pertain to the maximum current capacity. Similarly, the minimum load capacity required for a feeder is more about system design than ampacity itself. Total demand for all connected loads concerns the overall consumption in a system rather than the specific capacity of individual conductors.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://loadcalcfeederservices.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE