

Licensed Practical Nurse (LPN) Entrance Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	15

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. How many cubic centimeters are in 1 milliliter?

- A. 0.1 cc
- B. 1 cc
- C. 10 cc
- D. 100 cc

2. The vaporization of solid dry ice to gaseous carbon dioxide by heating is an example of?

- A. Sublimation
- B. Evaporation
- C. Precipitation
- D. Condensation

3. How many inches are there in 1 foot?

- A. 10 inches
- B. 12 inches
- C. 14 inches
- D. 16 inches

4. What does adding a negative number equate to?

- A. Addition
- B. Subtraction
- C. Multiplication
- D. Division

5. How many pints are in 1 quart?

- A. 1 pint
- B. 2 pints
- C. 3 pints
- D. 4 pints

6. Which part of the renal tube is primarily responsible for reabsorbing most solutes and water filtered out of the blood?

- A. Distal convoluted tubule
- B. Proximal convoluted tubule
- C. Loop of Henle
- D. Collecting duct

7. What is the smallest prime number?

- A. 0**
- B. 1**
- C. 2**
- D. 3**

8. Which group of organisms helps prevent the accumulation of organic wastes in nature?

- A. Rabbits**
- B. Mosses**
- C. Bacteria**
- D. Ferns**

9. Which immune response is NOT a part of the adaptive defenses?

- A. Antibody-mediated defense**
- B. Cell-mediated defense**
- C. Natural killer cell activity**
- D. B-cell activation**

10. Binary fission in paramecia and budding in yeast cells are examples of what type of reproduction?

- A. Asexual reproduction only**
- B. Sexual reproduction only**
- C. Spontaneous generation and sexual reproduction**
- D. Both sexual and asexual reproduction**

Answers

SAMPLE

1. B
2. A
3. B
4. B
5. B
6. B
7. C
8. C
9. C
10. A

SAMPLE

Explanations

SAMPLE

1. How many cubic centimeters are in 1 milliliter?

- A. 0.1 cc
- B. 1 cc**
- C. 10 cc
- D. 100 cc

One milliliter is equivalent to one cubic centimeter. This relationship is based on the definitions of liters and cubic centimeters, which are established units of volume in the metric system. A milliliter is defined as one-thousandth of a liter, and since one liter is equal to 1,000 cubic centimeters, it follows that one milliliter is equal to one cubic centimeter. This conversion is crucial for various applications in healthcare, including medication dosing and fluid measurements, ensuring accuracy and consistency in patient care. Understanding this relationship helps LPNs to effectively measure and administer medications, as well as interpret lab results and other medical information presented in these units.

2. The vaporization of solid dry ice to gaseous carbon dioxide by heating is an example of?

- A. Sublimation**
- B. Evaporation
- C. Precipitation
- D. Condensation

The process of solid dry ice transitioning directly into gaseous carbon dioxide when heated is a clear example of sublimation. Sublimation is defined as the phase transition of a substance from a solid directly to a gas without passing through the liquid phase. This phenomenon occurs under certain conditions of temperature and pressure, most effectively observed with substances like dry ice, which sublimates at temperatures above -78.5°C. In contrast, evaporation refers to the transition of a liquid to a gas, which is not applicable in this scenario, as dry ice is a solid at room temperature. Precipitation involves the process where a substance in solution comes out of solution and forms solid particles, which does not relate to the vaporization process described. Condensation is the reverse process, where a gas turns into a liquid, and not relevant to the context of solid dry ice becoming a gas. Thus, the transition of dry ice to carbon dioxide gas exemplifies sublimation as it skips the liquid phase entirely.

3. How many inches are there in 1 foot?

- A. 10 inches
- B. 12 inches**
- C. 14 inches
- D. 16 inches

In the Imperial system of measurement, one foot is defined as exactly 12 inches. This standard measurement is widely used in the United States and other countries that follow imperial units. Knowing this conversion is fundamental for tasks involving height, distance, or any measurement where feet and inches might be compared or calculated. For various practical applications, recognizing that 12 inches make up one foot allows individuals to effectively switch between these units. This is particularly important in tasks like construction, tailoring, and many everyday activities where both feet and inches are commonly used. Understanding this conversion can help with accurately interpreting measurements and ensuring precision in related work.

4. What does adding a negative number equate to?

- A. Addition
- B. Subtraction**
- C. Multiplication
- D. Division

Adding a negative number equates to subtraction because it effectively reduces the value of the original number. When you add a negative value to a positive number, you're moving down the number line, which decreases the total. For example, consider the addition of -3 to 5. Here, $5 + (-3)$ results in 2, which is the same as performing the subtraction $5 - 3$. This illustrates that adding a negative number simplifies to subtracting the absolute value of that negative number from the original number. Understanding this concept is fundamental in mathematics, particularly in operations involving integers. While the other operations listed—addition, multiplication, and division—do not specifically correspond to the action of adding a negative number in the same straightforward manner, it is the principle of subtraction that directly aligns with this process.

5. How many pints are in 1 quart?

- A. 1 pint
- B. 2 pints**
- C. 3 pints
- D. 4 pints

A quart is a unit of measurement that is equal to 2 pints. This relationship is important in both cooking and healthcare settings, where precise measurements can be critical. Understanding this conversion can help when calculating fluid intake or medication dosages in different units. The quart itself is a larger unit typically used for measuring liquids, while pints, being smaller, are often used for serving sizes or in recipes. Therefore, knowing that there are 2 pints in 1 quart can aid in converting measurements appropriately for various applications.

6. Which part of the renal tube is primarily responsible for reabsorbing most solutes and water filtered out of the blood?

- A. Distal convoluted tubule
- B. Proximal convoluted tubule**
- C. Loop of Henle
- D. Collecting duct

The proximal convoluted tubule is primarily responsible for reabsorbing most solutes and water filtered out of the blood. This part of the renal tubule plays a critical role in the kidney's function by reabsorbing approximately 65-70% of the water and a significant amount of solutes, such as glucose, amino acids, sodium, and bicarbonate. The cells lining the proximal convoluted tubule have numerous microvilli, which greatly increase the surface area available for reabsorption. Active transport mechanisms allow for these solutes to be moved back into the bloodstream effectively, while water follows by osmosis, maintaining fluid balance. This is crucial for homeostasis and ensuring that essential substances are not lost during the filtration process in the kidneys. In contrast, while other sections of the renal tube, such as the distal convoluted tubule, Loop of Henle, and collecting duct contribute to the reabsorption process, they do so to a lesser extent compared to the proximal convoluted tubule.

7. What is the smallest prime number?

- A. 0
- B. 1
- C. 2
- D. 3

The smallest prime number is 2. A prime number is defined as a natural number greater than 1 that has no positive divisors other than 1 and itself. In the case of 2, it is only divisible by 1 and 2, meeting the criteria for primality. Furthermore, it is the only even prime number; all other even numbers can be divided by 2, making them composite rather than prime. As for the other options, 0 and 1 do not qualify as prime numbers. Zero is not a natural number, and one only has one positive divisor, which is itself, thus it is not classified as prime either. The number 3 qualifies as a prime number, but it is larger than 2, making 2 the smallest. Therefore, 2 is undeniably the smallest prime number.

8. Which group of organisms helps prevent the accumulation of organic wastes in nature?

- A. Rabbits
- B. Mosses
- C. Bacteria
- D. Ferns

Bacteria play a critical role in the ecosystem by decomposing organic matter. They break down dead plants, animals, and waste products through processes such as decomposition, which recycles nutrients back into the soil. This activity helps prevent the accumulation of organic wastes, allowing for the continuity of life and the health of ecosystems. In contrast, while rabbits contribute to the ecosystem by participating in the food chain and the cycling of nutrients through their waste, they do not actively decompose organic matter. Mosses and ferns, as plants, primarily function in photosynthesis and contribute to habitats but do not have the specific role of breaking down waste materials like bacteria do. Therefore, the unique and essential function of bacteria as decomposers makes them the group of organisms that helps prevent the accumulation of organic wastes in nature effectively.

9. Which immune response is NOT a part of the adaptive defenses?

- A. Antibody-mediated defense**
- B. Cell-mediated defense**
- C. Natural killer cell activity**
- D. B-cell activation**

Natural killer cell activity is associated with the innate immune response rather than the adaptive immune response. The innate immune system acts as the first line of defense, responding quickly to a wide range of pathogens without the need for prior exposure or sensitization. Natural killer cells are part of this system and are critical for identifying and destroying infected or cancerous cells without requiring antibodies or prior learning about a specific pathogen. In contrast, antibody-mediated defense involves the production of antibodies by B cells, which is a hallmark of the adaptive immune system. Similarly, cell-mediated defense invokes T cells to recognize and eliminate infected host cells, and B-cell activation is the process through which B cells are stimulated to produce antibodies following exposure to an antigen. All of these components—antibody-mediated defense, cell-mediated defense, and B-cell activation—reflect the specificity and memory associated with adaptive immunity, which is why they differ fundamentally from the function of natural killer cells.

10. Binary fission in paramecia and budding in yeast cells are examples of what type of reproduction?

- A. Asexual reproduction only**
- B. Sexual reproduction only**
- C. Spontaneous generation and sexual reproduction**
- D. Both sexual and asexual reproduction**

Binary fission and budding are both processes that involve a single organism reproducing to create new individuals without the genetic contribution from another organism, which is the essence of asexual reproduction. In binary fission, a paramecium duplicates its genetic material and divides into two identical daughter cells. Similarly, in budding, a yeast cell grows a new individual from a small protrusion of the parent organism, which eventually detaches to form a separate entity. Both of these methods allow for rapid population increase and do not involve the recombination of genetic materials, which is characteristic of sexual reproduction. Asexual reproduction ensures that the offspring are genetically identical to the parent, leading to a stable population in an environment conducive to that species. This distinction sets a clear boundary between asexual methods, like binary fission and budding, and sexual reproduction, which involves the fusion of gametes and genetic diversity.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://lpnentrance.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE