

LADWP Electrical Craft Helper Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. In a circuit, if resistance increases while voltage remains constant, what will happen to the current?**
 - A. It will increase**
 - B. It will decrease**
 - C. It will remain the same**
 - D. It will double**

- 2. What is the purpose of electrical conduit?**
 - A. To increase electrical load**
 - B. To protect electrical wiring from damage**
 - C. To conduct electricity more efficiently**
 - D. To serve as an electrical insulator**

- 3. What happens when two unlike materials are rubbed together and then separated?**
 - A. One will be positive and the other negative**
 - B. They will remain neutral**
 - C. Both will become negatively charged**
 - D. Both will become positively charged**

- 4. When working on live circuits, what should a worker primarily be concerned about?**
 - A. Optimizing performance**
 - B. Minimizing noise**
 - C. Ensuring personal safety**
 - D. Reducing costs**

- 5. What is the purpose of using circuit breakers in electrical systems?**
 - A. To amplify the voltage**
 - B. To prevent short circuits**
 - C. To protect circuits from overload**
 - D. To regulate current flow**

6. What type of current is primarily used in power transmission?

- A. Direct Current (DC)**
- B. Alternating Current (AC)**
- C. Universal Current (UC)**
- D. Static Current (SC)**

7. Connecting two or more metallic objects with a wire or metal strap is known as what?

- A. Wiring**
- B. Bonding**
- C. Grounding**
- D. Linking**

8. What is a primary use of a capacitor in electrical circuits?

- A. To convert electrical energy into mechanical energy**
- B. To store and release electrical energy**
- C. To regulate voltage levels**
- D. To transform alternating current to direct current**

9. What type of transformer allows for continuous adjustability?

- A. Isolation transformer**
- B. Variable transformer**
- C. Step-up transformer**
- D. Step-down transformer**

10. What does ohm measure in an electrical circuit?

- A. Voltage**
- B. Resistance**
- C. Current**
- D. Power**

Answers

SAMPLE

1. B
2. B
3. A
4. C
5. C
6. B
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. In a circuit, if resistance increases while voltage remains constant, what will happen to the current?

- A. It will increase**
- B. It will decrease**
- C. It will remain the same**
- D. It will double**

When resistance in a circuit increases while the voltage remains constant, the current will decrease according to Ohm's Law, which states that current (I) is equal to voltage (V) divided by resistance (R), or $I = V/R$. This means that if the voltage is held steady and the resistance is increased, the overall current must decrease to maintain that relationship. For example, if you have a constant voltage of 10 volts and your resistance increases from 5 ohms to 10 ohms, the current will drop from 2 amps ($10V / 5\Omega$) to 1 amp ($10V / 10\Omega$). The fundamental principle is that higher resistance limits the flow of electric current, resulting in a reduction of current when voltage does not change. This is a key concept in understanding electrical circuits and the behavior of current in relation to voltage and resistance.

2. What is the purpose of electrical conduit?

- A. To increase electrical load**
- B. To protect electrical wiring from damage**
- C. To conduct electricity more efficiently**
- D. To serve as an electrical insulator**

The purpose of electrical conduit is to protect electrical wiring from damage. Conduits serve as a robust, protective covering for wires and cables, which can be susceptible to physical damage, moisture, corrosion, and various environmental factors. By encasing electrical wiring within conduit, it minimizes the risk of short circuits or electrical fires that could occur if wiring is exposed or damaged. Conduits are made from various materials such as metal, PVC, or fiberglass, each offering different levels of protection suited for specific applications. This protective function is critical in ensuring the safety and longevity of the electrical system, especially in environments where the wiring may face physical wear and tear.

3. What happens when two unlike materials are rubbed together and then separated?

- A. One will be positive and the other negative**
- B. They will remain neutral**
- C. Both will become negatively charged**
- D. Both will become positively charged**

When two unlike materials are rubbed together, a transfer of electrons occurs due to the difference in their electron affinity. This phenomenon is known as triboelectric charging. In this process, one material tends to lose electrons and becomes positively charged, while the other material gains those electrons and becomes negatively charged. This results in one of the materials having an overall positive charge and the other an overall negative charge once they are separated. This principle is applied in various everyday scenarios, such as rubbing a balloon on hair, where the balloon becomes negatively charged as it collects electrons from the hair, which loses some electrons and becomes positively charged. The interaction and subsequent separation of these two different materials lead to their opposite charges, confirming that one will be positive and the other negative.

4. When working on live circuits, what should a worker primarily be concerned about?

- A. Optimizing performance**
- B. Minimizing noise**
- C. Ensuring personal safety**
- D. Reducing costs**

When working on live circuits, the primary concern should be ensuring personal safety. Electrical work inherently involves risks, especially when dealing with live circuits where the potential for electric shock, arc flash, and other hazards is significantly elevated. It's essential for workers to prioritize their safety by following proper protocols, wearing appropriate personal protective equipment (PPE), and ensuring that they have the necessary training and awareness of the risks involved. Focusing on personal safety minimizes the risk of accidents and injuries, enabling the worker to effectively perform their job while safeguarding their well-being. Proper awareness and enforcement of safety measures can also prevent potential harm to others in the vicinity. While optimizing performance, minimizing noise, and reducing costs can be important aspects of electrical work, they should never take precedence over the fundamental need to keep oneself safe while working on potentially dangerous live circuits.

5. What is the purpose of using circuit breakers in electrical systems?

- A. To amplify the voltage
- B. To prevent short circuits
- C. To protect circuits from overload**
- D. To regulate current flow

The purpose of using circuit breakers in electrical systems primarily revolves around their function to protect circuits from overload. When an electrical circuit experiences more current than it is designed to handle, this excessive current can lead to overheating, damaging the wiring and connected devices, and potentially causing fires. Circuit breakers are designed to interrupt the flow of electricity when they detect such overload conditions, effectively cutting off the electrical supply to prevent further damage. By automatically switching off the circuit, circuit breakers provide a safety mechanism that protects both the electrical system and the devices operating within it. This feature is essential in maintaining the integrity of the entire electrical system, ensuring that it operates safely and efficiently. The design and mechanism of a circuit breaker allow it to respond quickly to overload situations, which is a critical aspect of electrical safety in homes and industrial settings. Thus, the role of circuit breakers as protectors against overload makes them a fundamental component in electrical systems, ensuring that power supply remains safe and managed effectively.

6. What type of current is primarily used in power transmission?

- A. Direct Current (DC)
- B. Alternating Current (AC)**
- C. Universal Current (UC)
- D. Static Current (SC)

The type of current primarily used in power transmission is Alternating Current (AC). AC is preferred for power transmission over long distances due to several key advantages. One major benefit is that AC can be easily transformed to higher voltages, which significantly reduces energy losses during transmission. High voltage transmission minimizes the current flowing through the conductors, resulting in lower resistive losses according to the formula $(P = I^2R)$, where (P) is power loss, (I) is current, and (R) is resistance. By using AC, utilities can step up the voltage for long-distance transmission and then step it down again before distribution to consumers. Additionally, AC generators and motors are generally simpler and more cost-effective to construct and maintain compared to their DC counterparts. This widespread infrastructure supports the use of AC in virtually all modern electrical grids, making it the standard for power transmission. The other options, while they may have specific uses, do not offer the same advantages for large-scale power distribution. For example, Direct Current (DC) is used for certain applications, such as in batteries and electronic devices, but it is less practical for long-distance transmission due to much higher energy losses compared to AC. Universal Current (UC)

7. Connecting two or more metallic objects with a wire or metal strap is known as what?

- A. Wiring**
- B. Bonding**
- C. Grounding**
- D. Linking**

The process of connecting two or more metallic objects with a wire or metal strap is known as bonding. This is a crucial practice in electrical work as it ensures that metallic objects are electrically connected and share the same electrical potential. By doing so, it helps to prevent electric shock hazards and ensures the safe operation of electrical systems. Bonding provides a path for fault currents or stray currents, thereby reducing the risk of electrical shock in case of a fault condition. It is particularly important in environments where conductive surfaces may be present, ensuring that all parts are at the same electrical potential and creating a safe environment for personnel and equipment. Wiring refers more broadly to the electrical connections made for power distribution, while grounding specifically refers to connecting an electrical system to the earth or a common reference point to help stabilize voltage and provide a return path for fault currents. Linking may imply a connection without the specific safety implications that bonding entails. Thus, bonding is the correct term for this safety practice of connecting metallic objects.

8. What is a primary use of a capacitor in electrical circuits?

- A. To convert electrical energy into mechanical energy**
- B. To store and release electrical energy**
- C. To regulate voltage levels**
- D. To transform alternating current to direct current**

A capacitor's primary function in electrical circuits is to store and release electrical energy, making it integral to a wide range of applications. When a voltage is applied across a capacitor, it accumulates charge on its plates, storing electrical energy in an electric field. This stored energy can be released when necessary, allowing it to smooth out fluctuations in electrical supply, filter signals, or provide quick bursts of energy in various electronic applications. For instance, in power supply circuits, capacitors help maintain steady voltage levels by discharging their stored energy when there are sudden demands. In audio circuits, they are used to filter out unwanted noise by allowing certain frequencies to pass while blocking others. This ability to both store and later discharge energy makes capacitors versatile components in both AC and DC circuits, facilitating various functions without altering energy form as indicated in other options.

9. What type of transformer allows for continuous adjustability?

- A. Isolation transformer
- B. Variable transformer**
- C. Step-up transformer
- D. Step-down transformer

A variable transformer is designed specifically to provide continuous adjustability of the output voltage. This is achieved through a mechanism that allows the user to change the turns ratio dynamically while the transformer is in operation. Variable transformers, often referred to as variacs, are used in various applications where precise control of voltage is required, such as in laboratory settings, testing equipment, and power supply regulation. In such a transformer, the output voltage can be smoothly varied from zero up to the maximum input voltage, making it highly versatile for applications that demand fine-tuning of voltage levels. The adjustability is typically accomplished using a movable contact that slides along a winding, altering the effective number of turns in the circuit. Other types of transformers mentioned, like isolation, step-up, and step-down transformers, serve more specific purposes that do not include continuous voltage adjustment. An isolation transformer is primarily used to decouple circuits for safety and noise reduction; step-up transformers increase voltage for transmission purposes, while step-down transformers reduce voltage for consumer use. These functions are static and predetermined, meaning they do not offer the flexibility of continuous adjustment like a variable transformer does.

10. What does ohm measure in an electrical circuit?

- A. Voltage
- B. Resistance**
- C. Current
- D. Power

Ohm measures resistance in an electrical circuit. Resistance is a property of a material that quantifies how much it opposes the flow of electric current. When a voltage is applied across a conductor, ohms quantify how much current will flow through it based on its resistance. This relationship is described by Ohm's Law, which states that voltage (in volts) is equal to current (in amperes) multiplied by resistance (in ohms). Therefore, understanding ohms as a unit of measurement for resistance is fundamental to analyzing and designing electrical circuits effectively.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ladwpeleccrafthelper.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE