Kotlin and Android From
Scratch Practice Test
(Sample)

Study Guide

BY EXAMZIFY

Everything you need from our exam experts!

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com




Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any
means, graphic, electronic, or mechanical, including photocopying,
recording, web distribution, taping, or by any information storage retrieval
system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable
sources accurate, complete, and timely information about this product.

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



Questions

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



1. How can you create a custom Dialog in Android?
A. By using an AlertDialog builder
B. By creating a new Activity

C. By extending the Dialog class and overriding necessary
methods to inflate a custom XML layout

D. By using the DialogFragment class

2. Which statement accurately describes a conditional
statement?

A. A conditional statement is a way to enforce a set of rules
B. A conditional statement is executed unconditionally
C. A conditional statement can only process boolean values

D. A conditional statement allows code execution based on
conditions

3. What is a benefit of using fragments in Android
development?

A. Navigation between fragments allows for more sophisticated
user interface patterns, such as tab bars.

B. Using multiple fragments within an activity allows for an
adaptive layout across multiple screen sizes.

C. The same fragments can be reused across multiple activities.
D. All of the above

4. What are the main differences between "ArrayList’ and
"List™ in Kotlin?
A. "Arraylist’ is immutable while "List™ is mutable
B. "ArrayList’ cannot contain duplicates while "List’ can

C. "Arraylist’ is mutable and allows modification, while "List" is
immutable

D. "ArraylList’ is a fixed-size structure while "List’ is dynamic

5. What is a good reason for adding comments to your code?
A. To confuse other developers
B. To explain the reasoning behind a code structure
C. To speed up the compilation process
D. To structure the code visually

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



6. Which of the following elements is considered a View in an
Android app?

A. An image

B. A clickable button
C. Text on the screen
D. All of the above

7. What is the function of an Intent in Android?
A. To store data temporarily
B. To facilitate communication between components
C. To connect to a database
D. To handle HTTP requests

8. Which ViewType is used for creating a segmented view in
Android?

A. Slider

B. Button

C. ViewPager
D. TabLayout

9. Is it okay for a ViewModel to directly reference a View
class?

A. True

B. False

C. Only for data binding.

D. Only if it references the lifecycle owner.

10. What are Kotlin extension functions?

A. Functions that allow you to modify existing classes

B. Functions that allow you to add new functionality to existing
classes without modifying their source code

C. Functions that change the return type of existing functions
D. Functions that allow inline class definitions

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



Answers

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



HOWOEROOOO

.c .
o

)

NORNAUTARWN -

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



Explanations

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



1. How can you create a custom Dialog in Android?
A. By using an AlertDialog builder
B. By creating a new Activity

C. By extending the Dialog class and overriding necessary
methods to inflate a custom XML layout

D. By using the DialogFragment class

Creating a custom Dialog in Android typically involves extending the Dialog class and
overriding the necessary methods to inflate a custom XML layout. This approach allows
for maximum customization, as you can define your own layout to include any UI
components you require, such as TextViews, Buttons, or any other views in the layout
XML file. When you extend the Dialog class, you can override methods like “onCreate()’
to set up your dialog's UI components, behaviors, and logic. After inflating the custom
layout using "LayoutInflater’, you can manage the dialog's lifecycle and provide tailored
functionality specific to your application's needs. Although using an AlertDialog builder
is an option for creating dialogs with predefined styles and standard functionalities, it
limits the customization. An AlertDialog is primarily designed for simple, standard
interactions, which may not meet certain design requirements for a bespoke user
experience. Creating a new Activity is not appropriate for custom dialogs; it generally
represents a standalone screen and not a transient interface element that overlays upon
an existing activity. Using the DialogFragment class is a reasonable way to create dialogs
as well, providing better lifecycle management and reusability in certain situations, but it
typically includes predefined styles and behaviors that may not fully address custom
layout needs without additional work. Thus,

2. Which statement accurately describes a conditional
statement?

A. A conditional statement is a way to enforce a set of rules
B. A conditional statement is executed unconditionally
C. A conditional statement can only process boolean values

D. A conditional statement allows code execution based on
conditions

A conditional statement is a programming construct that allows code to execute
differently based on whether specific conditions are met. This is fundamental to control
flow in programming, enabling a program to make decisions and execute certain blocks
of code when certain criteria return true. For example, in Kotlin, constructs like "if’,
“when’, or even "try-catch’ statements utilize conditions to determine which code path to
follow. When a condition evaluates to true, the code associated with that condition runs;
if it evaluates to false, that particular code block is skipped and another may be executed
instead. This ability to direct execution flow based on runtime conditions is what makes
conditional statements essential for building dynamic applications that respond
intelligently to user inputs and various other situations. The other statements do not
accurately capture the essence of conditional statements. They either describe incorrect
behaviors or limitations that do not apply to these programming constructs.
Understanding this foundational aspect is crucial for building effective and responsive
applications in Kotlin and any programming language.

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



3. What is a benefit of using fragments in Android
development?

A. Navigation between fragments allows for more sophisticated
user interface patterns, such as tab bars.

B. Using multiple fragments within an activity allows for an
adaptive layout across multiple screen sizes.

C. The same fragments can be reused across multiple activities.
D. All of the above

The advantage of using fragments in Android development encompasses several aspects
that contribute to efficient and flexible user interface design. One of the key benefits is
the ability to create sophisticated user interface patterns, such as tab bars. Fragments
allow for modular UI components that can enhance user navigation and segmentation of
content. Furthermore, using multiple fragments within a single activity enables adaptive
layouts that are particularly beneficial when targeting a range of screen sizes and
orientations. This adaptability is crucial in ensuring that the application remains
user-friendly on various devices, from smartphones to tablets. Additionally, fragments
can indeed be reused across different activities, promoting code reusability and reducing
redundancy. This means that the same fragment can be instantiated in different
activities, allowing for a consistent user experience while minimizing the effort required
to duplicate UI elements or functionality. Overall, the advantages of fragments include
enhanced interface complexity, better device responsiveness, and reusable components,
all of which contribute to a more cohesive and manageable development process. This
comprehensive set of benefits justifies why the collective answer is correct, highlighting
the utility of fragments in Android app development.

4. What are the main differences between "ArrayList’ and
"List’ in Kotlin?
A. "ArraylList’ is immutable while "List’ is mutable
B. "ArrayList’ cannot contain duplicates while "List’ can

C. Arraylist is mutable and allows modification, while List is
immutable

D. "ArraylList’ is a fixed-size structure while "List’ is dynamic

The primary distinction between "ArrayList’ and "List’ in Kotlin is that "ArrayList’ is
mutable, meaning that it allows for modifications such as adding, removing, or updating
elements, while "List’ represents an immutable collection by default when used in its
original form. This immutable aspect means that once a 'List’ is created, its size and
contents cannot be changed. This differentiation is essential in Kotlin as it promotes
functional programming practices, encouraging developers to leverage immutability for
safer and more predictable code. Thus, when working with a "List’, you can be assured
that its elements remain constant throughout its usage, which can help reduce bugs
associated with unintended changes. Meanwhile, "ArrayList’, as a subtype of List, allows
for the flexibility needed in scenarios where the collection’s size or content needs to be
dynamic. This understanding is critical for making informed choices about which
collection type to use based on the specific requirements of a task, such as whether data
needs to remain unalterable or if frequent modifications are expected.

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version



5. What is a good reason for adding comments to your code?
A. To confuse other developers

B. To explain the reasoning behind a code structure
C. To speed up the compilation process
D. To structure the code visually

Adding comments to your code serves several important purposes, and explaining the
reasoning behind a code structure is a key function of well-placed comments. Comments
help other developers (and your future self) understand why specific decisions were made
during implementation, which can be crucial for maintaining and updating code later on.
By clarifying the logic behind complex algorithms or outlining the purpose of certain
blocks of code, comments facilitate better collaboration and lead to a more manageable
codebase. They provide context that increases the readability and maintainability of the
code, allowing others to navigate through it more easily and effectively. In contrast,
adding comments to confuse developers or for aesthetic reasons does not contribute to a
codebase's usability or maintainability. Moreover, comments do not play a role in
speeding up the compilation process; compiling is a separate step that depends on the
code itself rather than any accompanying comments.

6. Which of the following elements is considered a View in an
Android app?

A. An image

B. A clickable button
C. Text on the screen
D. All of the above

In Android development, a View is a fundamental building block for user interface (UI)
components. Each of the listed elements—an image, a clickable button, and text on the
screen—are all instances of Views in Android. An image, which can be represented using
an ImageView', is a type of View that displays images within an application's layout. A
clickable button, represented by "Button’, is also a specific type of View designed to
respond to user interactions, such as taps or clicks. Similarly, text on the screen is often
displayed using a ‘TextView', which is yet another form of View used to present text to
the user. Since all these components are types of Views, the correct choice reflects that
each element—images, buttons, and textual content—plays a role in the construction of
the user interface and interacts with the user in different ways. This understanding is
crucial for effectively building responsive and interactive Android applications.

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version 10



7. What is the function of an Intent in Android?
A. To store data temporarily

B. To facilitate communication between components
C. To connect to a database
D. To handle HTTP requests

An Intent in Android serves as a fundamental tool for facilitating communication
between components of the application. It acts as a messaging object that can be used to
request an action from another app component—whether it's an Activity, a Service, or a
BroadcastReceiver. With an Intent, you can start a new Activity to show a different Ul or
request a Service to perform a background operation, among other things. For instance,
if you want to navigate from one screen (Activity) to another, you create an Intent that
specifies the current context and the target Activity you want to open. Intents can also
carry data between these components using "extras," which allows for more tailored
interactions based on user input or other conditions. The other options do not accurately
describe the primary function of an Intent: - Storing data temporarily relates more to
shared preferences or local storage rather than the role of an Intent. - Connecting to a
database involves specific classes and interfaces related to data storage (e.g., SQLite,
Room) and is not the responsibility of an Intent. - Handling HTTP requests is done
through libraries and classes like OkHttp or Retrofit, which are separate from what
Intents are designed to do. Hence, the function of an Intent as a conduit for
communication between application components

8. Which ViewType is used for creating a segmented view in
Android?

A. Slider

B. Button

C. ViewPager
D. TabLayout

The correct choice for creating a segmented view in Android is the ViewPager. ViewPager
is a layout manager that allows users to flip through pages of data, which is particularly
useful for implementing a segmented or swipeable view. It allows the user to swipe
between different views, and it can contain different fragments or views for each page.
This feature is excellent for displaying a collection of related content in a horizontal
scrollable manner. In the context of segmented views, the ViewPager can be effectively
used with a TabLayout to provide a visual representation of the segments. The TabLayout
typically works in conjunction with ViewPager to create a better user experience by
allowing users to select different segments using tabs and swipe between them
seamlessly. Other options may provide related functionalities but do not specifically
create a segmented view. For instance, a Slider allows users to choose a value from a
range, a Button is used for triggering actions, and TabLayout provides a row of tabs that
can be used for navigation, but on its own does not handle the segmented view
functionality without being paired with ViewPager. Therefore, the ability of the
ViewPager to handle swiping between different segments makes it the correct answer for
creating a segmented view.

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com for the full version

11



9. Is it okay for a ViewModel to directly reference a View
class?

A. True

B. False

C. Only for data binding.

D. Only if it references the lifecycle owner.

A ViewModel in Android is designed to hold and manage Ul-related data in a
lifecycle-conscious way. When developing with the Model-View-ViewModel (MVVM)
architecture, one of the key principles is to separate the concerns of the UI and the
business logic. A ViewModel should not reference any View class directly because it is
meant to be independent of the Ul framework, enabling it to provide data to the UI while
being agnostic to how that data is presented. Directly referencing a View complicates
the unit testing of the ViewModel, as it introduces dependencies on the Ul framework. It
also ties the ViewModel to a specific implementation of the user interface, breaking the
principles of modular design and reducing reusability. In short, by keeping the
ViewModel focused on managing and preparing the data for the Ul, while allowing the
actual UI components (such as Activities or Fragments) to handle how that data is
displayed and interacted with, developers can create a cleaner and more maintainable
architecture. In the context of the provided choices, the correct assertion that a
ViewModel should not reference a View class aligns with best practices, emphasizing the
importance of separation of concerns in Android application development.

10. What are Kotlin extension functions?
A. Functions that allow you to modify existing classes

B. Functions that allow you to add new functionality to existing
classes without modifying their source code

C. Functions that change the return type of existing functions
D. Functions that allow inline class definitions

Kotlin extension functions are a powerful feature that enables developers to augment
existing classes with additional functionality without the need to alter their source code.
This is particularly beneficial when dealing with classes from third-party libraries or
standard libraries where you cannot and often do not want to change the original
implementation. By using extension functions, you can create new functions that appear
to be part of the class, allowing for more expressive and clearer code. For instance, if
you have a class that represents a "String" and you want to add a method that checks if
the string is a palindrome, you can define an extension function for the "String" class.
This new function will behave as if it is part of the “String" class, providing convenience
and readability. In summary, the correct answer highlights how extension functions
enable additional functionality without necessitating changes to existing class
definitions, thus embracing the principles of extensibility and code reusability in Kotlin
programming.

Sample study guide. Visit https://kotlinandroidfromscratch.examzify.com forthe4h19803ipRage 12



