

Key Stage 3 (KS3) Physics Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which aspect of energy usage is often analyzed to determine efficiency in machines?**
 - A. The ratio of input energy to output work**
 - B. Only the size of the machinery**
 - C. The overall cost of materials**
 - D. The age of the technology**

- 2. What is the main function of a transformer?**
 - A. To increase the current of an electric circuit**
 - B. To change the voltage of an alternating current (AC)**
 - C. To convert AC to DC voltage**
 - D. To store electrical energy for later use**

- 3. What device converts electrical energy into mechanical energy?**
 - A. Batteries**
 - B. Electric motor**
 - C. Transformers**
 - D. Resistors**

- 4. What does the normal line represent in relation to a mirror?**
 - A. A line drawn at 45° to the mirror.**
 - B. A line drawn parallel to the incident ray.**
 - C. A line drawn at 90° to the mirror.**
 - D. A line showing the path of the reflected ray.**

- 5. What type of energy transformation occurs when you turn on a light bulb?**
 - A. Mechanical energy to sound energy**
 - B. Kinetic energy to potential energy**
 - C. Electrical energy to light (and heat) energy**
 - D. Chemical energy to electrical energy**

6. How often does the Earth complete one rotation on its tilted axis?

- A. 12 hours**
- B. 24 hours**
- C. 48 hours**
- D. 36 hours**

7. Which of the following is not a form of energy?

- A. Kinetic**
- B. Chemical**
- C. Mass**
- D. Electrical**

8. What instrument is used to measure current in a circuit?

- A. A voltmeter**
- B. An ammeter**
- C. A resistor**
- D. A switch**

9. What happens when a North and South Pole of a magnet are brought close to each other?

- A. They repel**
- B. They remain unchanged**
- C. They attract**
- D. They spin around**

10. What is the unit of measurement for force in the International System of Units (SI)?

- A. Pound (lb)**
- B. Kilogram (kg)**
- C. Newton (N)**
- D. Joule (J)**

Answers

SAMPLE

1. A
2. B
3. B
4. C
5. C
6. B
7. C
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. Which aspect of energy usage is often analyzed to determine efficiency in machines?

- A. The ratio of input energy to output work**
- B. Only the size of the machinery**
- C. The overall cost of materials**
- D. The age of the technology**

The aspect of energy usage that is most commonly analyzed to determine the efficiency of machines is the ratio of input energy to output work. Efficiency is a measure of how well a machine converts the energy it consumes into useful work. This ratio is typically expressed as a percentage, calculated by dividing the useful output energy (or work) by the input energy and then multiplying by 100 to get a percentage. Understanding this ratio is crucial because it helps us assess how effectively a machine operates. A higher ratio means that more of the input energy is converted into useful work, indicating greater efficiency. Conversely, lower efficiency would suggest that a significant portion of the input energy is wasted, perhaps as heat or sound, rather than being used for productive purposes. In the context of the other options, size, overall cost of materials, and the age of technology do not directly indicate how well a machine converts energy into work. While these factors may influence performance and cost-effectiveness, they do not provide a clear measure of efficiency in terms of energy conversion. Thus, focusing on the input energy versus output work is the most relevant approach to evaluating machine efficiency.

2. What is the main function of a transformer?

- A. To increase the current of an electric circuit**
- B. To change the voltage of an alternating current (AC)**
- C. To convert AC to DC voltage**
- D. To store electrical energy for later use**

The main function of a transformer is to change the voltage of an alternating current (AC). Transformers work on the principle of electromagnetic induction and are primarily used in electrical systems to either step up (increase) or step down (decrease) voltage levels. This ability to modify voltage is crucial for efficient power transmission over long distances, as higher voltages allow for reduced current and lower energy losses due to resistance in wires. For instance, when electricity is transmitted over long distances, it is more efficient to send it at high voltage and low current. Upon reaching the destination, transformers reduce the voltage to safer, usable levels. This process does not involve changing the frequency or complying with conditions applicable to direct current (DC); therefore, options describing changes in current, direct conversion from AC to DC, or energy storage do not represent the main function of transformers.

3. What device converts electrical energy into mechanical energy?

- A. Batteries
- B. Electric motor**
- C. Transformers
- D. Resistors

An electric motor is the device that converts electrical energy into mechanical energy. This conversion happens through the interaction of magnetic fields and current-carrying conductors within the motor. When electrical energy flows through the coils inside the motor, it creates a magnetic field that interacts with permanent magnets or other magnetic fields in the motor. This interaction produces a force that causes the rotor to spin, which in turn can do mechanical work, like turning a fan or driving a pump. Batteries, on the other hand, are sources of stored electrical energy and do not convert energy; instead, they provide the electrical energy needed for devices like motors to operate. Transformers are used to change the voltage of alternating current (AC) electricity and do not convert energy types; rather, they transfer electrical energy from one circuit to another with a change in voltage. Resistors are components that resist the flow of electrical current, converting electrical energy into heat, not into mechanical energy. This understanding of how electric motors function is foundational in both physics and technology, highlighting the transformation of energy forms that is central to many electrical devices.

4. What does the normal line represent in relation to a mirror?

- A. A line drawn at 45° to the mirror.
- B. A line drawn parallel to the incident ray.
- C. A line drawn at 90° to the mirror.**
- D. A line showing the path of the reflected ray.

The normal line is a critical concept in understanding how light interacts with reflective surfaces like mirrors. It is defined as a line that is drawn perpendicular to the surface of the mirror at the point where the incident ray strikes the mirror. Being perpendicular means it forms a 90-degree angle with the mirror's surface. This is important because the behavior of light upon reflection is determined in relation to this normal line. Laws of reflection state that the angle of incidence (the angle between the incident ray and the normal line) is equal to the angle of reflection (the angle between the reflected ray and the normal line). Understanding the normal line helps clarify these angles and underpins many principles of optics and light behavior. In this context, other choices do not accurately represent the normal line's role. For instance, a line at 45° to the mirror does not provide the necessary reference for angles of incidence or reflection. A line drawn parallel to the incident ray would also misrepresent the relationship needed for applying the reflection laws. Lastly, while the line showing the path of the reflected ray is a relevant concept, it does not define the normal line itself, which is solely about the perpendicularity to the mirror surface.

5. What type of energy transformation occurs when you turn on a light bulb?

- A. Mechanical energy to sound energy**
- B. Kinetic energy to potential energy**
- C. Electrical energy to light (and heat) energy**
- D. Chemical energy to electrical energy**

When you turn on a light bulb, electrical energy is transformed into light (and heat) energy. This process takes place because the electrical current flows through the filament or LED in the bulb. In traditional incandescent bulbs, for instance, the filament heats up due to the resistance it encounters, producing light through incandescence. Meanwhile, in LED bulbs, the conversion is more efficient and primarily produces light with less heat generated. This energy transformation is fundamental to understanding how light bulbs operate and illustrates the principle of energy conversion in electrical devices.

6. How often does the Earth complete one rotation on its tilted axis?

- A. 12 hours**
- B. 24 hours**
- C. 48 hours**
- D. 36 hours**

The Earth completes one full rotation on its tilted axis approximately every 24 hours. This rotation is the reason for the cycle of day and night as different parts of the Earth are exposed to the Sun's light. The 24-hour period is driven by a combination of the Earth's rotation rate and its axial tilt, which affects the way sunlight is distributed across the planet. Understanding this cycle is crucial for grasping how time zones are structured and why we experience varying lengths of daylight throughout the year. The tilt of the axis also contributes to the changing seasons, but the complete rotation itself remains anchored around this 24-hour cycle.

7. Which of the following is not a form of energy?

- A. Kinetic**
- B. Chemical**
- C. Mass**
- D. Electrical**

Mass is considered a measure of the amount of matter in an object, and it does not represent energy in itself. The concept of energy encompasses various forms, such as kinetic energy (the energy of motion), chemical energy (stored in the bonds of chemical compounds), and electrical energy (associated with electric charge and currents). These forms of energy can be converted from one type to another and can perform work or produce heat. In contrast, mass does not have the same capacity to do work or transfer energy, making it fundamentally different from the other options listed.

8. What instrument is used to measure current in a circuit?

- A. A voltmeter
- B. An ammeter**
- C. A resistor
- D. A switch

An ammeter is specifically designed to measure electric current in a circuit. It is connected in series with the circuit components to ensure that the current flowing through the circuit passes through the ammeter. This allows it to accurately measure the flow of electric charge, typically expressed in amperes (A). The ammeter works on the principle of measuring the voltage drop across a known resistance within the meter itself, allowing it to calculate the current based on Ohm's Law. In contrast, a voltmeter measures the voltage across components without affecting the current flow in the circuit, a resistor is used to limit current flow and does not measure it, and a switch controls the flow of current rather than measuring it. Thus, the ammeter is the appropriate instrument for measuring current directly.

9. What happens when a North and South Pole of a magnet are brought close to each other?

- A. They repel
- B. They remain unchanged
- C. They attract**
- D. They spin around

When a North and South Pole of a magnet are brought close to each other, they attract each other. This attraction occurs due to the fundamental properties of magnets. The concept behind this is rooted in the magnetic field produced by each pole of the magnet. A North Pole generates a magnetic field that is directed outward, while a South Pole has a magnetic field that is directed inward. When the North Pole of one magnet encounters the South Pole of another, their magnetic fields interact in such a way that they pull toward each other. This interaction is described by the basic rule of magnetism: unlike poles attract, while like poles repel. Therefore, when you bring together these opposite poles, the resulting force is one of attraction, leading to a strong pull between them. This principle is foundational in understanding how magnets work and is widely applied in various technologies and applications, such as in electric motors and magnetic locks.

10. What is the unit of measurement for force in the International System of Units (SI)?

- A. Pound (lb)**
- B. Kilogram (kg)**
- C. Newton (N)**
- D. Joule (J)**

In the International System of Units (SI), the unit of measurement for force is the Newton, represented by the symbol 'N'. The Newton is defined as the amount of force required to accelerate a one-kilogram mass by one meter per second squared. This relation ties directly to Newton's second law of motion, which states that force equals mass times acceleration ($F = ma$). The other units mentioned serve different purposes: the Joule is the unit of energy, the kilogram measures mass, and the pound is a unit of force commonly used in the United States but not recognized as part of the SI system. Thus, the Newton is the correct and universally accepted unit for measuring force in scientific contexts.

SAMPLE

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://keystage3-physics.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE