

Kettering Therapist Multiple-Choice (TMC) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the initial phase of mechanical ventilation characterized by?**
 - A. Monitoring the patient for spontaneous breathing**
 - B. Recommending and initiating mechanical ventilation settings**
 - C. Assessing readiness for weaning procedures**
 - D. Identifying and correcting ventilator problems**

- 2. What range is recommended for the initial PEEP setting in patients with no prior information?**
 - A. 0 - 2 cmH₂O**
 - B. 2 - 4 cmH₂O**
 - C. 2 - 6 cmH₂O**
 - D. 6 - 8 cmH₂O**

- 3. What triggers the end of a flow-cycled ventilation phase?**
 - A. When a predetermined volume is delivered**
 - B. When the set time expires**
 - C. When a predefined flow is achieved**
 - D. When pressure limitations are met**

- 4. What does Point of Care Testing refer to in a clinical setting?**
 - A. Any laboratory testing conducted in a centralized facility**
 - B. Any type of lab testing done at the bedside**
 - C. Only rapid tests performed in emergency rooms**
 - D. Only tests that require specialized laboratory equipment**

- 5. What is the appropriate initial action if you are unable to maintain a patient's oxygen saturation levels during mechanical ventilation?**
 - A. Increase the PEEP**
 - B. Assess the ventilation settings**
 - C. Administer bronchodilators**
 - D. Change the ventilator mode**

6. What effect do air bubbles have on arterial blood gas (ABG) readings specifically on PaCO2?

- A. PaCO2 increases significantly**
- B. PaCO2 remains unchanged**
- C. PaCO2 decreases toward 0 torr**
- D. PaCO2 fluctuates randomly**

7. What is measured during Exhaled Nitric Oxide (FENO) testing?

- A. Oxygen concentration**
- B. Carbon dioxide levels**
- C. Nitric oxide concentration**
- D. Airway resistance**

8. Which suction catheter size is most appropriate for a patient with a size 7.5 mm ID ETT?

- A. 10 Fr.**
- B. 12 Fr.**
- C. 14 Fr.**
- D. 8 Fr.**

9. What is the normal vacuum pressure range for infants?

- A. 60 - 80 mmHg**
- B. 80 - 100 mmHg**
- C. 100 - 120 mmHg**
- D. 120 - 140 mmHg**

10. What is the formula for calculating PAO2?

- A. $PAO2 = (PaCO2 \times 7) + (FiO2 + 10)$**
- B. $PAO2 = (FiO2 \times 7) - (PaCO2 + 10)$**
- C. $PAO2 = FiO2 + (PaCO2 / 7)$**
- D. $PAO2 = PaO2 + (FiO2 \times 10)$**

Answers

SAMPLE

- 1. B**
- 2. C**
- 3. C**
- 4. B**
- 5. B**
- 6. C**
- 7. C**
- 8. A**
- 9. A**
- 10. B**

SAMPLE

Explanations

SAMPLE

1. What is the initial phase of mechanical ventilation characterized by?

- A. Monitoring the patient for spontaneous breathing
- B. Recommending and initiating mechanical ventilation settings**
- C. Assessing readiness for weaning procedures
- D. Identifying and correcting ventilator problems

The initial phase of mechanical ventilation is characterized by recommending and initiating mechanical ventilation settings. This phase involves evaluating the patient's condition and determining the appropriate settings on the ventilator to support or replace spontaneous breathing. During this critical initial stage, healthcare providers must consider various factors such as the patient's clinical status, underlying conditions, and desired ventilation goals, which can include controlling hypercapnia, hypoxemia, or both. Setting up the ventilator properly is essential to ensure adequate oxygenation and ventilation. It requires careful calibration of parameters such as tidal volume, respiratory rate, and the fraction of inspired oxygen (FiO₂), according to the patient's specific needs. These decisions are pivotal as they establish the framework for subsequent phases, where monitoring, weaning, and troubleshooting of the ventilator may follow based on the patient's responses. It's important to be aware that while monitoring for spontaneous breathing, assessing readiness for weaning, and identifying ventilator problems are all integral steps in the overall management of a ventilated patient, these actions typically follow the initial setup and implementation of the mechanical ventilation settings.

2. What range is recommended for the initial PEEP setting in patients with no prior information?

- A. 0 - 2 cmH₂O
- B. 2 - 4 cmH₂O
- C. 2 - 6 cmH₂O**
- D. 6 - 8 cmH₂O

The recommendation for the initial PEEP setting in patients with no prior information typically falls within the range of 2 to 6 cmH₂O. This range is considered a safe starting point for a variety of patients because it provides a balance that can help improve oxygenation without significantly increasing the risk of overdistension of the alveoli or compromising hemodynamics. Setting PEEP too low may not sufficiently recruit collapsed alveoli, which can affect gas exchange and oxygenation. Conversely, a PEEP that is set too high can lead to potential complications, such as reducing venous return or causing barotrauma in patients with compromised lung function. Thus, starting within this range allows for careful monitoring and adjustment based on the patient's response and clinical status. It's also important to note that clinicians would generally titrate PEEP in conjunction with other ventilatory parameters and patient conditions for optimal outcomes.

3. What triggers the end of a flow-cycled ventilation phase?

- A. When a predetermined volume is delivered
- B. When the set time expires
- C. When a predefined flow is achieved**
- D. When pressure limitations are met

In flow-cycled ventilation, the cycle ends when a predefined flow is achieved. This means that the ventilator will continue delivering gas until a certain flow rate, predetermined by the clinician, drops to a specified level. The rationale behind this mechanism is to ensure that the patient receives an adequate tidal volume during each breath while allowing for the rapid transition between inhalation and exhalation, which is essential in certain clinical scenarios. This approach helps maintain a more consistent flow pattern that can improve the comfort and synchrony of the patient-ventilator interaction. By using flow as the cycling criterion, the ventilator can adapt quickly to changes in the patient's respiratory needs, especially during spontaneous breathing efforts. In contrast, other criteria like predetermined volume delivery, set time expiration, or pressure limitations pertain to different modes of triggering or cycling in mechanical ventilation and do not specifically define the end of the flow-cycled phase. Each of those has its own important role in various ventilation strategies, but for the flow-cycled mode, the emphasis is placed on monitoring and responding to flow achievements to optimize the ventilation process.

4. What does Point of Care Testing refer to in a clinical setting?

- A. Any laboratory testing conducted in a centralized facility
- B. Any type of lab testing done at the bedside**
- C. Only rapid tests performed in emergency rooms
- D. Only tests that require specialized laboratory equipment

Point of Care Testing (POCT) refers specifically to any type of laboratory testing that is conducted at or near the site of patient care, such as the bedside. This approach enables timely decision-making and immediate clinical management, as results are available almost instantly. The essence of POCT lies in its convenience and quick turnaround time, facilitating rapid responses in various clinical scenarios, including but not limited to emergency care, outpatient settings, and even at home. The other choices describe scenarios that do not accurately define POCT. Laboratory testing in a centralized facility signifies a different context where tests are processed in a laboratory rather than at the point of care, which delays result availability. Rapid tests performed exclusively in emergency rooms also do not encompass the broader application of POCT that can be conducted in various environments, including clinics and in-home settings. Tests requiring specialized laboratory equipment typically necessitate a centralized facility for processing, thus falling outside the scope of POCT, which emphasizes simplicity and accessibility in testing.

5. What is the appropriate initial action if you are unable to maintain a patient's oxygen saturation levels during mechanical ventilation?

- A. Increase the PEEP**
- B. Assess the ventilation settings**
- C. Administer bronchodilators**
- D. Change the ventilator mode**

Assessing the ventilation settings is critical when a patient's oxygen saturation levels cannot be maintained during mechanical ventilation. This step allows the clinician to evaluate the current parameters, such as tidal volume, respiratory rate, and inspiratory pressure, to ensure they are appropriate for the patient's needs. By reviewing these settings, it may be possible to identify issues such as inadequate ventilation or incorrect oxygen concentration, allowing for immediate adjustments to improve oxygenation. Following a thorough assessment, adjustments can be made to optimize the patient's ventilation and oxygenation. Monitoring the patient's response to any changes is also essential in determining the effectiveness of the interventions implemented. This approach promotes a systematic and evidence-based response to addressing oxygenation issues during mechanical ventilation.

6. What effect do air bubbles have on arterial blood gas (ABG) readings specifically on PaCO₂?

- A. PaCO₂ increases significantly**
- B. PaCO₂ remains unchanged**
- C. PaCO₂ decreases toward 0 torr**
- D. PaCO₂ fluctuates randomly**

When air bubbles mix with a blood sample, they can have a profound effect on the partial pressure of carbon dioxide (PaCO₂) readings obtained from arterial blood gas (ABG) analysis. The presence of air bubbles in the sample introduces an environment where there is a higher concentration of oxygen and a lower concentration of carbon dioxide compared to the blood. As a result, the PaCO₂ in the sample decreases significantly, often approaching a value near zero torr. This occurs because the carbon dioxide diffuses out of the blood sample and into the bubbles, while the oxygen from the bubbles can enter the blood. This exchange alters the normal gas composition, leading to an artificially low measurement of PaCO₂ when tested. In a clinical context, recognizing the influence of air bubbles on ABG results is crucial to ensure accurate interpretation and appropriate patient management.

7. What is measured during Exhaled Nitric Oxide (FENO) testing?

- A. Oxygen concentration**
- B. Carbon dioxide levels**
- C. Nitric oxide concentration**
- D. Airway resistance**

In Exhaled Nitric Oxide (FENO) testing, the primary measurement taken is the concentration of nitric oxide in the exhaled breath. This test is particularly useful in assessing airway inflammation and is often utilized in patients with asthma. Elevated levels of nitric oxide in the breath can indicate inflammation in the airways, which is a hallmark of asthma and other respiratory conditions. Nitric oxide is a signaling molecule that plays a role in various physiological processes, including vasodilation and immune responses. In the context of respiratory health, its presence in the exhaled air provides valuable insights into the inflammatory status of the airways. Monitoring FENO levels can assist healthcare providers in diagnosing and managing asthma and other pulmonary diseases more effectively. Other measurements, such as oxygen concentration, carbon dioxide levels, and airway resistance, are important in respiratory assessment but are not the focus of FENO testing. This differentiates the test as a unique tool for understanding airway responsiveness and inflammation specifically linked to nitric oxide levels.

8. Which suction catheter size is most appropriate for a patient with a size 7.5 mm ID ETT?

- A. 10 Fr.**
- B. 12 Fr.**
- C. 14 Fr.**
- D. 8 Fr.**

The most appropriate suction catheter size for a patient with a size 7.5 mm internal diameter (ID) endotracheal tube (ETT) is indeed the 10 French (Fr) catheter. The selection of suction catheter size is primarily determined by the internal diameter of the ETT, as it is crucial to choose a catheter that will effectively clear secretions without causing trauma or increasing airway resistance significantly. In general, the rule of thumb for determining the size of the suction catheter is to select a diameter that is no more than half or two-thirds of the ID of the ETT. For a 7.5 mm ID ETT, the equivalent diameter in French is approximately 22 Fr (with 1 mm equating to about 3 Fr). Therefore, a 10 Fr suction catheter, which is about 3.3 mm in diameter, falls well within the acceptable range for use with a 7.5 mm ID ETT, allowing for effective suctioning while minimizing the risk of airway complications. Larger catheter sizes, such as 12 Fr and 14 Fr, may be too bulky and could potentially obstruct airflow, cause trauma to the airway, or create unnecessary resistance that hampers ventilation. The 8 Fr

9. What is the normal vacuum pressure range for infants?

- A. 60 - 80 mmHg**
- B. 80 - 100 mmHg**
- C. 100 - 120 mmHg**
- D. 120 - 140 mmHg**

The normal vacuum pressure range for infants is essential for safe suctioning during respiratory care. A pressure range of 60 to 80 mmHg is appropriate for infants because it is low enough to prevent trauma to delicate airway tissues while effectively clearing secretions. Vacuum pressures that are too high, such as those found in the other options, can lead to mucosal injury, cause irritation, or even result in airway obstruction due to excessive suctioning force. Therefore, understanding that the lower pressure range specifically designed for infants minimizes risks while facilitating necessary care is crucial for respiratory therapists and healthcare providers working with this vulnerable population.

10. What is the formula for calculating PAO2?

- A. $PAO2 = (PaCO2 \times 7) + (FiO2 + 10)$**
- B. $PAO2 = (FiO2 \times 7) - (PaCO2 + 10)$**
- C. $PAO2 = FiO2 + (PaCO2 / 7)$**
- D. $PAO2 = PaO2 + (FiO2 \times 10)$**

The formula for calculating PAO2, or the partial pressure of oxygen in the alveoli, is derived from the alveolar gas equation. The correct formulation includes the influence of the fraction of inspired oxygen (FiO_2) and the partial pressure of carbon dioxide ($PaCO_2$). For the correct approach, the PAO_2 can be estimated using the formula that takes the fraction of inspired oxygen into account while adjusting for the effects of $PaCO_2$. The specific relationship expressed in the correct answer shows how to balance these variables. In this way, as you increase the FiO_2 , you would see a corresponding increase in the expected PAO_2 value, while the effect of $PaCO_2$ is subtracted out. It's essential to understand that PAO_2 indicates how much oxygen is available for gas exchange in the lungs, which is crucial for evaluating a patient's respiratory status. The calculation effectively illustrates how oxygen and carbon dioxide levels interact in the alveoli, reflecting the body's respiratory efficiency and the impact of the administered oxygen concentration. Ultimately, this understanding of the PAO_2 calculation is vital in clinical practice, especially in managing patients requiring oxygen therapy, as it allows for better decision-making regarding their respiratory care and monitoring.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ketteringtmc.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE