

Kentucky Registered Environmental Health Specialist (REHS) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. To prevent plumbing backflow, what is the recommended distance for a water inlet or faucet above the flood-level rim?**
 - A. One inch for all sizes**
 - B. One inch for a 0.5 inch diameter pipe, two inches for a 1 inch diameter pipe**
 - C. Two inches for all sizes**
 - D. Three inches for any pipe size**
- 2. From where is typhoid most likely to originate when sourced from untreated water?**
 - A. Poultry processing facility**
 - B. Beef processing plant**
 - C. Vegetable farms**
 - D. Seafood markets**
- 3. What is the typical incubation period for *Campylobacter Enteritis*?**
 - A. 1-10 days**
 - B. 3-7 days**
 - C. 7-14 days**
 - D. 10-20 days**
- 4. What defines an acute disease?**
 - A. A disease characterized by a gradual onset of mild symptoms**
 - B. A disease that is characterized by sudden onset with severe symptoms**
 - C. A chronic condition that persists for years**
 - D. A disease that only affects individuals over age 55**
- 5. What type of agent causes *Clostridium perfringens* food poisoning?**
 - A. Viral Agent**
 - B. Bacterial Toxin**
 - C. Protozoan**
 - D. Parasitic Invasion**

6. What environmental factor is associated with plague transmission?

- A. High humidity levels**
- B. Pest control measures**
- C. Flea and rodent populations in homes**
- D. Seasonal flooding patterns**

7. What type of soil test involves bored holes in a proposed system site?

- A. Soil moisture test**
- B. Soil nutrient analysis**
- C. Soil percolation test**
- D. Soil texture assessment**

8. What is the best container for storing hazardous materials?

- A. Plastic containers**
- B. Corrosion resistant containers**
- C. Glass containers**
- D. Metal containers**

9. What type of waste do class 4 landfills primarily handle?

- A. Industrial waste**
- B. Construction and demolition waste**
- C. Municipal solid waste**
- D. Medical waste**

10. What is radon?

- A. A colorless, odorless gas released by radium from uranium**
- B. A toxic heavy metal found in water**
- C. A chemical compound used in pesticides**
- D. A type of mold that grows in damp areas**

Answers

SAMPLE

1. B
2. A
3. A
4. B
5. B
6. C
7. C
8. B
9. B
10. A

SAMPLE

Explanations

SAMPLE

- 1. To prevent plumbing backflow, what is the recommended distance for a water inlet or faucet above the flood-level rim?**
 - A. One inch for all sizes**
 - B. One inch for a 0.5 inch diameter pipe, two inches for a 1 inch diameter pipe**
 - C. Two inches for all sizes**
 - D. Three inches for any pipe size**

The recommended distance for a water inlet or faucet above the flood-level rim is crucial in preventing plumbing backflow, which can contaminate the potable water supply. The specific distances are designed to provide a safety measure depending on the diameter of the pipe involved. In this case, maintaining a one-inch distance for a 0.5-inch diameter pipe and a two-inch distance for a one-inch diameter pipe acknowledges the increased risk of backflow with larger pipe diameters. The greater the pipe diameter, the more significant the potential for backflow due to the higher volume of water that can be siphoned back into the system. This tailored approach helps ensure that all potential scenarios of backflow risk are adequately mitigated. Understanding these specifications can be crucial for maintaining safe plumbing practices, protecting public health, and complying with regulatory standards. Thus, option B highlights an appropriate and practical understanding of backflow prevention methodologies within plumbing systems.

- 2. From where is typhoid most likely to originate when sourced from untreated water?**
 - A. Poultry processing facility**
 - B. Beef processing plant**
 - C. Vegetable farms**
 - D. Seafood markets**

The correct answer is that typhoid is most likely to originate from poultry processing facilities when sourced from untreated water. Typhoid fever is caused by the bacterium *Salmonella Typhi*, which can be present in the feces of infected individuals. In areas where sanitary conditions are poor, untreated water can become contaminated with these pathogens. Poultry processing facilities can be particularly concerning because they may use water that is not adequately treated for processing the birds. If this water becomes contaminated with *Salmonella Typhi*, it can lead to the spread of typhoid fever, especially if the poultry is not cooked thoroughly, or if the contaminated water comes into contact with surfaces or utensils that are used for food preparation. While other sources such as beef processing plants, vegetable farms, and seafood markets could also potentially be sources of contamination, poultry processing is recognized as a higher risk factor in this context due to the specific practices and conditions that can lead to cross-contamination with fecal matter in untreated water sources.

3. What is the typical incubation period for Campylobacter Enteritis?

- A. 1-10 days**
- B. 3-7 days**
- C. 7-14 days**
- D. 10-20 days**

The typical incubation period for Campylobacter Enteritis is indeed 1-10 days. Campylobacter is a common bacterial cause of diarrhea and often results from the consumption of undercooked poultry or contaminated water. The incubation period varies somewhat based on individual factors, but most people infected with Campylobacter will begin to show symptoms anywhere from one to ten days after exposure. This duration reflects the time it takes for the bacteria to multiply and for the immune response to develop, leading to the gastrointestinal symptoms typically associated with the infection. The other time frames presented do not accurately reflect the incubation period for Campylobacter. While 3-7 days overlaps with the correct answer as a subset of the broader period, it's important to encompass the total range observed clinically. The longer periods of 7-14 days and 10-20 days are beyond the typical ranges noted in medical literature and epidemiological studies for Campylobacter Enteritis.

4. What defines an acute disease?

- A. A disease characterized by a gradual onset of mild symptoms**
- B. A disease that is characterized by sudden onset with severe symptoms**
- C. A chronic condition that persists for years**
- D. A disease that only affects individuals over age 55**

An acute disease is defined by its sudden onset and the presence of severe symptoms. This classification reflects how quickly the disease manifests and the intensity of its effects on the individual. Acute diseases typically arise suddenly and can lead to significant health challenges within a short period. They often require immediate medical attention to manage the symptoms, which can be quite severe. In contrast, other options present different characteristics. For example, gradual onset of mild symptoms pertains more to chronic diseases or subacute conditions, while chronic conditions are defined by their long duration and persistence. Additionally, the belief that a disease only affects individuals over age 55 does not capture the true nature of acute diseases, as they can occur in any age group regardless of demographics. Thus, the key characteristic that defines acute diseases remains their sudden onset accompanied by severe symptoms.

5. What type of agent causes Clostridium perfringens food poisoning?

- A. Viral Agent**
- B. Bacterial Toxin**
- C. Protozoan**
- D. Parasitic Invasion**

Clostridium perfringens food poisoning is primarily caused by a bacterial toxin produced by the bacterium itself. This organism is a type of bacteria that can grow in food, particularly in large quantities of meats and gravies that are cooked and kept warm for long periods. When ingested, the bacteria can produce an enterotoxin in the intestines, leading to symptoms associated with food poisoning, such as abdominal cramps and diarrhea. Understanding the nature of Clostridium perfringens is essential in food safety practices; it thrives in anaerobic conditions and can be found in many prepared foods if they are not stored properly. Effective cooking and prompt refrigeration are critical to prevent the proliferation of these bacteria and the associated toxin formation. This emphasizes the importance of proper food handling and storage, aligning with the objectives of the Kentucky Registered Environmental Health Specialist program to promote public health and safety.

6. What environmental factor is associated with plague transmission?

- A. High humidity levels**
- B. Pest control measures**
- C. Flea and rodent populations in homes**
- D. Seasonal flooding patterns**

The association of flea and rodent populations in homes with plague transmission is significant due to the role these animals play as vectors for the disease. Plague is primarily caused by the bacterium Yersinia pestis, which is usually spread to humans through bites from infected fleas that live on rodents. When the rodent population is high, there tend to be more fleas, increasing the risk of transmission to humans. This is particularly evident in areas where rodents such as rats or prairie dogs are prevalent, leading to potential outbreaks. Enhanced understanding of this dynamic aids public health initiatives aimed at controlling rodent and flea populations to mitigate the risk of plague transmission. While factors like humidity and flooding may influence the habitat of rodents or fleas, they do not directly relate to the transmission mechanisms of the plague as straightforwardly as the presence of these animals themselves does. Pest control can be an effective means to reduce risks, but it does not inherently represent an environmental factor associated with transmission in the way that the presence of flea and rodent populations does.

7. What type of soil test involves bored holes in a proposed system site?

- A. Soil moisture test**
- B. Soil nutrient analysis**
- C. Soil percolation test**
- D. Soil texture assessment**

The soil percolation test is specifically designed to assess the rate at which water moves through soil, which is crucial for the design and placement of septic systems. During this test, holes are bored into the proposed site to allow for observation of how quickly water infiltrates into the soil. The results of this test help determine the soil's ability to absorb and treat wastewater, ensuring that septic systems function effectively and do not contaminate groundwater or surface water. A soil moisture test generally measures the amount of water present in the soil but does not involve boring holes into the ground for drainage study. Soil nutrient analysis evaluates the chemical composition and nutrient content of the soil but does not require physical alteration of the soil through boring. Soil texture assessment involves analyzing the proportion of different soil particles (sand, silt, clay) but relies on sampling rather than boring holes, as it focuses on the physical makeup of the soil rather than its drainage capacity. Thus, the percolation test is the appropriate method when checking the suitability of a soil for an onsite sewage system, as it involves the boreholes to observe infiltration properties directly.

8. What is the best container for storing hazardous materials?

- A. Plastic containers**
- B. Corrosion resistant containers**
- C. Glass containers**
- D. Metal containers**

Corrosion-resistant containers are the most suitable choice for storing hazardous materials due to their ability to withstand chemical corrosion and degradation. Many hazardous materials possess corrosive properties that can react with certain types of container materials, leading to leaks, spills, or even hazardous chemical reactions. Corrosion-resistant materials, such as certain plastics, glass treated for strength, or specialized coatings on metals, are designed specifically to prevent damage and maintain the integrity of both the container and its contents over time. While plastic, glass, and metal containers can serve purposes in various contexts, they are not always ideal for all types of hazardous substances. For example, standard metal or plastic containers may corrode if exposed to strong acids or bases, whereas glass containers, although resistant to many chemicals, can shatter or break, creating safety risks. The primary focus when selecting a container for hazardous materials is to ensure that it is specifically engineered to resist the effects of the substances being stored, which is why corrosion-resistant containers stand out as the best option in this scenario.

9. What type of waste do class 4 landfills primarily handle?

- A. Industrial waste
- B. Construction and demolition waste**
- C. Municipal solid waste
- D. Medical waste

Class 4 landfills are specifically designed to handle construction and demolition waste. This type of waste includes materials generated from the construction, renovation, and demolition of buildings and other structures. Common examples are concrete, wood, metals, and other debris that result from these activities. These landfills are tailored to accommodate the high volumes and specific characteristics of construction waste, which differ significantly from other waste types such as industrial, municipal, or medical waste. The management practices for construction and demolition debris in these landfills focus on minimizing environmental impact and allowing for potential recycling and reuse of materials. While other types of waste exist, they fall under different regulatory classifications and require different handling and disposal methods, which is why they are not a fit for Class 4 landfills.

10. What is radon?

- A. A colorless, odorless gas released by radium from uranium**
- B. A toxic heavy metal found in water
- C. A chemical compound used in pesticides
- D. A type of mold that grows in damp areas

Radon is a naturally occurring, colorless, and odorless gas that is produced from the radioactive decay of uranium found in soil, rock, and water. As uranium breaks down, it releases radium, which further decays to radon. This gas can infiltrate homes and buildings through cracks in foundations and other openings, making it a concern for indoor air quality and a potential health hazard due to its radioactive properties. This understanding emphasizes radon's unique characteristics and its origins from uranium and radium decay, highlighting its status as a gas rather than a solid or liquid heavy metal, a chemical compound, or a biological organism like mold. Recognizing radon's nature and risks is crucial for environmental health specialists tasked with assessing and mitigating indoor air quality issues.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://kentuckyrehs.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE