

Journeymen Lineman Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Can you determine the line voltage by inspecting a circuit breaker?**
 - A. Yes, voltage can be visually assessed**
 - B. Yes, by checking the ammeter reading**
 - C. No, circuit breakers are rated by amps only**
 - D. No, voltage ratings are always visible**
- 2. What role does a supervisor typically play in ensuring safety during electrical work?**
 - A. Performing all manual tasks to ensure consistency**
 - B. Overseeing operations and ensuring adherence to safety protocols**
 - C. Training all new employees on basic tasks**
 - D. Completing paperwork for compliance reports**
- 3. When drilling a hole in a wood pole, how much larger should the hole be than the bolt size?**
 - A. 1/8 inch larger**
 - B. 1/16 inch larger**
 - C. 1/4 inch larger**
 - D. 1/2 inch larger**
- 4. What should be done with the neutral on an open wye-open delta transformer?**
 - A. Always leave it floating**
 - B. Always tie it to system neutral**
 - C. Ground it to the earth**
 - D. Connect it to the load circuit**
- 5. What is the fourth form of measurement of voltage and current associated with sine waves?**
 - A. RMS (Root Means Squared)**
 - B. Average**
 - C. Peak-to-peak**
 - D. Frequency**

6. How many times does a sine wave typically cross 0° in one complete cycle?

- A. 1 Time**
- B. 2 Times**
- C. 3 Times**
- D. 4 Times**

7. Which of the following conditions can lead to dangerous electrical arcs?

- A. Low humidity levels in the air**
- B. Moisture on electrical components**
- C. High ambient temperatures**
- D. Excessive use of electrical surge protectors**

8. What is a safety concern for linemen working in inclement weather?

- A. Increased wear on equipment**
- B. Potential for reduced visibility and equipment malfunction**
- C. Higher production costs**
- D. Limited access to safety gear**

9. What color is designated for emergency service lines on vehicles?

- A. Blue**
- B. Red**
- C. Green**
- D. Yellow**

10. What is the displacement of a WYE-WYE or a Delta-Delta bank?

- A. 30° or 210°**
- B. 0° or 180°**
- C. 90° or 270°**
- D. 120° or 240°**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. A
6. C
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Can you determine the line voltage by inspecting a circuit breaker?

- A. Yes, voltage can be visually assessed**
- B. Yes, by checking the ammeter reading**
- C. No, circuit breakers are rated by amps only**
- D. No, voltage ratings are always visible**

The answer is rooted in the functionality and specifications of circuit breakers. Circuit breakers are primarily designed to protect electrical circuits from overloads and short circuits. They are rated based on their current-carrying capacity measured in amps. This means that while you can determine the maximum amount of current the circuit breaker can handle, you cannot ascertain the line voltage simply by inspecting the circuit breaker itself. Voltage ratings can vary widely and are not inherently displayed on all circuit breakers. The visible information on a breaker often pertains to its amperage rating, which does not provide direct insight into the voltage applied to the circuit. To determine line voltage, other tools and methods must be employed, such as using a multimeter to measure voltage directly from the circuit. Thus, the understanding that circuit breakers are rated by amps only solidifies the reasoning behind why one cannot determine line voltage by simply inspecting a circuit breaker.

2. What role does a supervisor typically play in ensuring safety during electrical work?

- A. Performing all manual tasks to ensure consistency**
- B. Overseeing operations and ensuring adherence to safety protocols**
- C. Training all new employees on basic tasks**
- D. Completing paperwork for compliance reports**

The role of a supervisor in ensuring safety during electrical work is crucial and centers around overseeing operations and ensuring adherence to safety protocols. Supervisors are responsible for maintaining a safe work environment by actively monitoring the activities of their team and ensuring that all workers follow established safety regulations and practices. They are trained to identify potential hazards, implement safety measures, and enforce compliance with various safety standards, which helps prevent accidents and injuries on the job. Supervisors also provide guidance and support for their team, ensuring that everyone understands their roles in maintaining safety. They facilitate communication regarding safety concerns and best practices, thus fostering a culture of safety within the team. This active oversight and commitment to safety make the supervisor's role integral to any electrical work environment.

3. When drilling a hole in a wood pole, how much larger should the hole be than the bolt size?

- A. 1/8 inch larger**
- B. 1/16 inch larger**
- C. 1/4 inch larger**
- D. 1/2 inch larger**

The correct answer is that the hole should be 1/16 inch larger than the bolt size when drilling in a wood pole. This specific size allows for proper clearance and ensures that the bolt can be easily inserted without binding or causing stress to the surrounding wood. A hole that is just slightly larger than the bolt provides enough space for expansion due to changes in temperature or moisture, which can cause the wood to swell. Additionally, a 1/16-inch difference minimizes the risk of the bolt wobbling or allowing excessive movement, which can compromise the integrity of the installation. Using too large of a diameter for the hole may lead to a loose fit, which could affect the stability and strength of the connection, whereas a hole that is too small could hinder the installation process and potentially damage the bolt or the wood when force is applied. Therefore, 1/16 inch is considered the ideal compromise for maintaining secure and robust connections while allowing for proper fit and adjustment.

4. What should be done with the neutral on an open wye-open delta transformer?

- A. Always leave it floating**
- B. Always tie it to system neutral**
- C. Ground it to the earth**
- D. Connect it to the load circuit**

In a three-phase system, the neutral is crucial for providing a return path for current and stabilizing voltage levels across the phases. In an open wye-open delta transformer configuration, the neutral is typically tied to the system neutral. This connection helps to maintain proper voltage relationships within the system and ensures that loads are balanced. When the neutral is tied to the system neutral, it allows for effective phase-to-ground overcurrent protection and under-voltage conditions. It also helps limit the maximum phase-to-neutral voltage, thereby enhancing the safety and reliability of the system. Additionally, this ensures that faults can be effectively cleared and that the system operates under standard electrical performance criteria. Floating the neutral would leave the system vulnerable to voltage imbalances, and grounding it could create unwanted ground loops or hazards. Connecting it to the load circuit would not apply as the neutral should be a reference point for voltage rather than carrying current directly from a load. Thus, tying the neutral to the system neutral is the appropriate action for maintaining the integrity and stability of the electrical system in an open wye-open delta transformer setup.

5. What is the fourth form of measurement of voltage and current associated with sine waves?

A. RMS (Root Means Squared)

B. Average

C. Peak-to-peak

D. Frequency

The fourth form of measurement of voltage and current associated with sine waves is RMS, or Root Mean Square. This method is significant because it provides a practical way to express the effective value of an alternating current (AC) waveform. RMS is calculated by taking the square of the instantaneous values of the current or voltage over one complete cycle, averaging these squared values, and then taking the square root of that average. This process yields a value that represents the equivalent direct current (DC) value that would deliver the same power to a load. Therefore, when dealing with sine waveforms, the RMS value is essential for accurately determining the performance of electrical systems, especially in terms of power calculations and energy consumption. The other options highlight different aspects of waveform measurement but do not serve as the standard for effective voltage and current readings in AC systems. Average values provide a mean level but can be misleading for sinusoidal waves. Peak-to-peak measurements give the total variation but do not reflect effective power. Frequency indicates how often the waveform cycles but does not pertain directly to voltage or current measurement. Thus, RMS is the key measurement for the effective values of sine waves.

6. How many times does a sine wave typically cross 0° in one complete cycle?

A. 1 Time

B. 2 Times

C. 3 Times

D. 4 Times

A sine wave typically crosses the 0° line twice in one complete cycle. To understand this, consider the behavior of the sine function, which fluctuates between -1 and 1. In one full cycle, which spans from 0° to 360°, the sine wave starts at 0° (crossing the axis), rises to its maximum value of 1 at 90°, descends back to 0° at 180° (another crossing), continues down to its minimum value of -1 at 270°, and finally returns to 0° at 360°. Since it crosses the 0° line at the start and halfway through the cycle down to the bottom and back up, the total number of crossings within one cycle is two. Thus, the correct answer regarding how many times a sine wave crosses 0° in one complete cycle is two.

7. Which of the following conditions can lead to dangerous electrical arcs?

- A. Low humidity levels in the air**
- B. Moisture on electrical components**
- C. High ambient temperatures**
- D. Excessive use of electrical surge protectors**

Moisture on electrical components can indeed lead to dangerous electrical arcs. When moisture is present, it can form a conductive path on surfaces that are not intended to conduct electricity, allowing current to travel through unintended routes. This can create short circuits and lead to electrical arcing, which occurs when electricity jumps across gaps in a circuit. This phenomenon can produce high temperatures and even cause fires or equipment damage. Ensuring that electrical components are kept dry and free from moisture is critical to maintaining safety and preventing electrical hazards.

8. What is a safety concern for linemen working in inclement weather?

- A. Increased wear on equipment**
- B. Potential for reduced visibility and equipment malfunction**
- C. Higher production costs**
- D. Limited access to safety gear**

The focus on reduced visibility and equipment malfunction makes the correct answer significant for linemen working in inclement weather. Adverse weather conditions, such as rain, snow, fog, or high winds, can severely impair visibility, making it challenging for linemen to see obstacles, work areas, and even each other. This can lead to accidents or injuries on the job site. Additionally, inclement weather can cause equipment to function improperly. For instance, wet conditions can lead to electrical short circuits or slick surfaces that contribute to slips and falls. Linemen must be acutely aware of these hazards to ensure their safety and the safety of their crew while navigating through potentially treacherous working environments. Other considerations, like increased wear on equipment or higher production costs, while relevant to operational efficiency, do not take precedence over immediate safety risks. Limited access to safety gear could be a concern, but it doesn't specifically highlight the direct hazards brought on by weather conditions like reduced visibility and malfunctions. Thus, the focus on visibility and malfunction captures the essential safety concerns during challenging weather conditions.

9. What color is designated for emergency service lines on vehicles?

- A. Blue**
- B. Red**
- C. Green**
- D. Yellow**

The color designated for emergency service lines on vehicles is red. This choice is widely accepted in many organizations and standards, as red is traditionally associated with emergency services, danger, and the need for immediate attention. In the context of emergency response, utilizing red helps convey urgency and signals a need for priority treatment and quick access. This consistent use of red promotes safety by ensuring that emergency services are easily identifiable in critical situations. In contrast, other colors have differing associations; for instance, blue is often used for informational or traffic signage, green signals safety or go, and yellow warns of caution or potential hazards. These color codes help streamline communication and improve safety in various environments, including roadways and emergency services.

10. What is the displacement of a WYE-WYE or a Delta-Delta bank?

- A. 30° or 210°**
- B. 0° or 180°**
- C. 90° or 270°**
- D. 120° or 240°**

The displacement of a WYE-WYE or Delta-Delta bank is commonly understood as being either 0° or 180° . This is because these configurations are symmetrical in their phase relationships, and the voltages in a WYE configuration are referenced to a neutral point, leading to a phase displacement of either 0° (when in phase) or 180° (when they are opposing). In a Delta configuration, the phase relationships also yield similar results, leading to the conclusion that the displacement is fundamentally characterized by these two angles. The other choices involve angles that are not relevant to the phase relationships inherent in WYE-WYE or Delta-Delta setups, as they suggest phase displacements that do not align correctly with the alternating current systems used in these configurations. Therefore, understanding the specific phase angles associated with these transformer banks is essential for effective management of electrical systems.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://journeymanlineman.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE