

JLAB Biology SOL Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 – 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. How do bacteria typically reproduce?
 - A. Asexually through binary fission
 - B. Sexually through conjugation
 - C. Through mitosis and meiosis
 - D. By forming spores
2. Which of the following experiments helped support hypotheses about the origin of life?
 - A. Fox's protocell experiment
 - B. Darwin's natural selection theory
 - C. Watson and Crick's model-building
 - D. Fleming's penicillin discovery
3. Which of the following is true regarding the relationship between environmental factors and population sizes?
 - A. Populations are entirely unaffected by environmental changes
 - B. Stable environments lead to fluctuating population sizes
 - C. Changes in environmental conditions can lead to fluctuations in population sizes
 - D. All populations respond the same to environmental factors
4. Which chromosome sequence could indicate a deletion event?
 - A. abc-defghijklmn
 - B. abc-ghijklmn
 - C. abcdefgh-ijklmn
 - D. abcdefghijklmn
5. What factor would exclude overharvesting as the cause of the decline in edible fungi species?
 - A. Increased rainfall
 - B. A parallel decline in non-edible species
 - C. Higher temperatures
 - D. Improvements in agricultural practices

6. Based on DNA fingerprints, which horse is most likely the father?

- A. Horse 1
- B. Horse 2
- C. Horse 3
- D. Horse 4

7. How do plants and fungi differ in terms of nutrition?

- A. Plants are autotrophic while fungi are heterotrophic
- B. Fungi make their own food using sunlight, while plants do not
- C. Both fungi and plants are autotrophic
- D. Plants absorb nutrients from decaying matter, unlike fungi

8. Which of the following substances has a pH of about 3?

- A. Oranges
- B. Apples
- C. Milk
- D. Water

9. What is the best classification of clams, which are known to filter food particles from the water?

- A. Herbivores
- B. Carnivores
- C. Filter feeders
- D. Scavengers

10. What characteristic makes ice less dense than liquid water?

- A. Hydrogen bonding
- B. Ionization
- C. Temperature effects
- D. Evaporation rates

Answers

SAMPLE

1. A
2. A
3. C
4. B
5. B
6. C
7. A
8. B
9. C
10. A

SAMPLE

Explanations

SAMPLE

1. How do bacteria typically reproduce?

A. Asexually through binary fission

- B. Sexually through conjugation
- C. Through mitosis and meiosis
- D. By forming spores

Bacteria typically reproduce asexually through a process known as binary fission. In binary fission, a single bacterial cell duplicates its genetic material and then divides into two identical daughter cells. This method of reproduction allows for rapid population growth, especially under favorable environmental conditions, as one bacterium can multiply into millions in a short time. While some bacteria are capable of genetic exchange through processes like conjugation, which involves the transfer of genetic material between two cells, this is not a method of reproduction in itself. Instead, it plays a role in increasing genetic diversity. Bacteria do not undergo mitosis or meiosis as they lack a nucleus, which are processes associated with eukaryotic cell division. Spore formation is also a survival mechanism that certain bacteria employ in harsh conditions, but it is not the primary means of reproduction. Hence, binary fission remains the standard and most common method of reproduction among bacteria.

2. Which of the following experiments helped support hypotheses about the origin of life?

- A. Fox's protocell experiment
- B. Darwin's natural selection theory
- C. Watson and Crick's model-building
- D. Fleming's penicillin discovery

Fox's protocell experiment is pivotal in supporting hypotheses about the origin of life because it demonstrated how simple organic molecules could organize into more complex structures that resemble early cellular life, known as protocells. In his experiments, Fox created vesicles that encapsulated compounds, mimicking the behavior of cell membranes. This suggested that life could have originated from simpler forms through natural processes, contributing to our understanding of abiogenesis, the process by which life arises naturally from non-living matter. The experiment aligns with the hypothesis that life began from simple organic compounds in the primordial environment, evolving over time into more complex forms. By showing the potential pathways for the formation of cellular structures, Fox's work offers vital insights into how the first living organisms might have emerged on Earth.

3. Which of the following is true regarding the relationship between environmental factors and population sizes?

- A. Populations are entirely unaffected by environmental changes
- B. Stable environments lead to fluctuating population sizes
- C. Changes in environmental conditions can lead to fluctuations in population sizes**
- D. All populations respond the same to environmental factors

The relationship between environmental factors and population sizes is largely driven by how changes in those environmental conditions impact resources, habitat, and the overall ecosystem. When environmental conditions change—whether through natural events, climate shifts, or human activities—it can lead to fluctuations in the availability of food, water, and suitable living conditions. For example, a drought can decrease water availability, impacting not just one species but the entire food web, leading to declines in certain populations. Conversely, favorable conditions, such as a period of abundant rainfall or a lack of predators, can lead to population booms. These fluctuations are a natural response of populations trying to adapt to their changing environments. Thus, the statement that changes in environmental conditions can lead to fluctuations in population sizes is accurate; it highlights the dynamic interplay between ecosystems and the organisms that inhabit them. The other options fail to capture this complexity. Some suggest that populations are completely unaffected by environmental changes, or that stability in environments leads to population fluctuations, which contradicts the observed ecological patterns. Similarly, claiming all populations respond the same to environmental factors overlooks the diversity of species and their varied adaptations.

4. Which chromosome sequence could indicate a deletion event?

- A. abc-defghijklmn
- B. abc-ghijklmn**
- C. abcdefgh-ijklmn
- D. abcdefghijklmn

A deletion event refers to the loss of a segment of a chromosome, which can be indicated by a change in the sequence where certain elements are missing. In the correct choice, the sequence shows a break in continuity—specifically, the absence of the segment "def" that is present in the other options. This missing segment signifies that part of the chromosome has been deleted, thereby leading to a different sequence than what would be expected based on the complete series. In contrast, the other sequences either represent full, uninterrupted segments of a chromosome or indicate other genetic variations that do not include a deletion. Thus, the identification of the missing portion in the correct sequence becomes a direct indicator of a deletion event on the chromosome.

5. What factor would exclude overharvesting as the cause of the decline in edible fungi species?

- A. Increased rainfall
- B. A parallel decline in non-edible species**
- C. Higher temperatures
- D. Improvements in agricultural practices

The decline in edible fungi species being linked to a parallel decline in non-edible species suggests that the issue is not specific to overharvesting. Overharvesting typically impacts only the targeted populations, while a simultaneous decline in non-edible fungi may indicate broader environmental changes or ecological factors affecting all fungi. This correlation points to underlying issues such as habitat loss, disease, climate change, or pollution rather than specific human harvesting practices. Thus, the presence of a parallel decline in non-edible species effectively excludes overharvesting as the sole cause for the decline in edible fungi, highlighting the complexity of ecosystems where multiple factors can influence species populations.

6. Based on DNA fingerprints, which horse is most likely the father?

- A. Horse 1
- B. Horse 2
- C. Horse 3**
- D. Horse 4

DNA fingerprinting is a technique that analyzes specific regions of DNA that vary greatly among individuals. These variations help in identifying genetic relationships among organisms, including parentage determination. In the case of determining paternity in horses using DNA fingerprints, the matching patterns of DNA segments between the offspring and potential fathers are critical. The correct answer indicates that Horse 3 has DNA segments that closely match those of the offspring, showing a high degree of similarity in the analyzed DNA markers. This suggests that Horse 3 has contributed genes to the offspring, making it the most likely father. When analyzing the DNA fingerprints, the presence of certain markers that are present in the offspring and also in Horse 3, but not in the other horses, further supports this determination. These genetic markers serve as evidence that Horse 3 is the parent, as horses inherit half of their genetic material from each parent. Thus, based on the patterns provided by the DNA fingerprints, Horse 3 stands out as the most probable father due to the conclusive matching of genetic traits between it and the offspring.

7. How do plants and fungi differ in terms of nutrition?

- A. Plants are autotrophic while fungi are heterotrophic**
- B. Fungi make their own food using sunlight, while plants do not
- C. Both fungi and plants are autotrophic
- D. Plants absorb nutrients from decaying matter, unlike fungi

The correct answer identifies a fundamental difference between plants and fungi regarding their nutritional modes. Plants are classified as autotrophic organisms, meaning they can produce their own food through photosynthesis. This process involves using sunlight, carbon dioxide, and water to create glucose and oxygen. Chlorophyll, the green pigment in plants, captures light energy necessary for this process. In contrast, fungi are heterotrophic, which means they cannot make their own food. Instead, they obtain nutrients by decomposing organic material. Fungi secrete enzymes into their environment that break down complex organic substances into simpler compounds, allowing them to absorb the nutrients they need for growth and metabolism. This difference in nutritional strategy is crucial for understanding the ecological roles of these organisms. The other options do not accurately represent these distinctions. For instance, the notion that fungi make their own food using sunlight is incorrect as fungi lack chlorophyll and cannot perform photosynthesis. Similarly, the idea that both fungi and plants are autotrophic is inaccurate because the two organisms belong to different nutritional categories. Lastly, stating that plants absorb nutrients from decaying matter is misleading, as that is a process associated with fungi, which play a crucial role in nutrient cycling in ecosystems.

8. Which of the following substances has a pH of about 3?

- A. Oranges
- B. Apples**
- C. Milk
- D. Water

The substance that has a pH of about 3 is oranges. Oranges are citrus fruits that contain citric acid, contributing to their acidic nature and giving them a pH value typically in the range of 3 to 4. This acidity is responsible for their tart flavor and is a common characteristic of many citrus fruits. In contrast, apples generally possess a pH closer to neutral, usually between 3 and 4 but often slightly higher than that of oranges. Milk has a pH around 6 to 7, making it neutral or mildly acidic, while pure water has a neutral pH of 7. The significant difference in pH values among these substances highlights the importance of acidity in classifying foods and their taste profiles.

9. What is the best classification of clams, which are known to filter food particles from the water?

- A. Herbivores
- B. Carnivores
- C. Filter feeders**
- D. Scavengers

Clams are best classified as filter feeders due to their unique feeding mechanism. They have specialized gills that allow them to filter small food particles, such as plankton and organic matter, from the surrounding water as it flows through their bodies. During this process, clams open their shells slightly and use ciliary action on the gills to trap and transport food towards their mouths. This distinct feeding strategy is characteristic of filter feeders, distinguishing them from herbivores, carnivores, and scavengers, which have different dietary habits and methods of obtaining food. Herbivores primarily consume plant material, carnivores feed on other animals, and scavengers consume dead or decaying organic matter, none of which accurately describe the mode of feeding in clams.

10. What characteristic makes ice less dense than liquid water?

- A. Hydrogen bonding**
- B. Ionization
- C. Temperature effects
- D. Evaporation rates

Ice is less dense than liquid water primarily due to the structure formed by hydrogen bonding during the freezing process. When water freezes, the molecules arrange themselves into a crystalline lattice structure, which stabilizes distances between the molecules in such a way that there is more empty space in the ice than in the liquid form of water. This molecular arrangement makes ice occupy a larger volume compared to the same mass of liquid water, resulting in lower density. In contrast, in its liquid state, water molecules are in constant motion and can slide past one another, allowing them to be closer together, which increases density. This unique property of water, driven by the hydrogen bonds, is crucial as it enables ice to float on liquid water, which has significant ecological implications for aquatic life during winter months. Temperature effects, ionization, and evaporation rates do not directly account for the lower density of ice compared to liquid water; rather, it is the hydrogen bonding that plays a central role in this characteristic.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://jlabbiologysol.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE